ep

December 4, 2020

WORM GEAR
Producer supplier exporter of worm gear

We warmly welcome shoppers both in the home and abroad to make contact with us to negotiate organization, exchange facts and cooperate with us.
We specializing in the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and much more.
Incorporate 1 0.5 modulus brass worm gear shaft and one particular twenty teeth brass worm gear wheel.
The transmission framework of worm shaft is simple, compact, little volume and light excess weight.
Worm Shaft Z1=1, turn a round of worm gear teeth, can get a large transmission ratio, usually within the energy
CAST IRON WORM GEAR REDUCER
The transmission is stable, the vibration, impact and noise are tiny, the reduction ratio is big, the versatility is wide, and it can be utilised with numerous mechanical products.

It could possibly acquire a large transmission ratio with single-stage transmission, and features a compact construction. Most models have far better self-locking functionality, and may save braking devices for mechanical equipment with braking demands.
Gears aids us through a mechanism of rotation amongst two axes to make energy. So they, using the support of rotation following a mechanical theory associated to physics transfers speed into energy. They might be of two sizes, one particular modest plus the other significant, adjoining one another with the aid of teeth. The teeth are interlocked and result in rotation.
WORM GEAR AND Strengths OF WORM GEARS
If concerning two gears one is heavier as well as the other lighter it is mentioned the bodyweight turns into the great aspect to cause friction. In case the bodyweight looks as well hefty rotation could be hampered creating inconvenience to move the machine with which they may be connected.

Distinct gears have various teeth. The teeth are inside a twisted type or within a straight type. It’s the action of a helical one to radiate movement involving two shafts. Whereas the bevel sort has teeth dependant on conical surface. The shafts are under no circumstances parallel and intersected sharply in an angle.
WORM GEAR Pace REDUCER Marketplace Velocity REDUCER FOR Electrical MOTOR
Two or 3 reducers can be utilized to form a multi-stage reducer to get a great gear ratio.
A worm, in industrial parlance, is really a shaft by using a helical thread. It’s frequently a component of a gear that meshes which has a toothed wheel. Worm gears then again, are individuals identified as worm wheels. Sometime lots of persons are confused with all the terms worm, worm gear and worm drive, thinking that these three mean exactly the same point.

Worm gears are significant especially when there is a want to cut back the gear size. It’s the worm that has the capability to make the gear rotate and never the other way around. With all the shallow angle over the worm, the gear won’t possess the capability to rotate it.

Forms of worm gear

You can find in essence three diverse sorts of worm wheels: the non-throated; single throated; and double throated. Non-throated worm wheels are people that don’t have throats in the two the worms plus the gear. Single throated categories are individuals whose gears are throated. Lastly, double throated ones are these with throated worms and gears.

Worm gear characteristics

You will discover notable traits of the worm wheel. Initial, it’s the capability to transfer and carry load with utmost accuracy. It is also very best for substantial velocity reductions. The efficiency with the worm gear, nonetheless, depends on installation situations, the worm’s lead angle, sliding velocity, surface good quality and lubricant assortment.

Generating worm gears develop into efficient

A course of action regarded as double enveloping can make worm gearing become more effective. This technological innovation enhances the current attributes from the worm wheel. This leads to superior accuracy and increased torque. What tends to make the method so particular is definitely the undeniable fact that it may be employed to provide far better lubrication and design and style even though loads are divided in each and every of the gear’s teeth.
Worm gear applications

Worm wheels make conveyor systems do its function. Conveyors are tools to transfer 1 materials from one particular spot to one more. Besides conveyor programs though, the worm wheel may also be used in high efficiency motor vehicles.

ep

December 2, 2020

Carbon Steel And Stainless Steel Conveyor Chain Hollow Pin Chain
Transmission chain(Driving Chain), Conveyor Chain ¡§C roller chain, Engineering Chain, Stainless Steel Chain, Lifting Chain, Agricultural Chain, Forging Series, Cast Iron Chain.

Hollow Pin Chains 08BP 40HP, 50HPSS, 60HP, 12BHP, 80HP, C2040HP, C2050HP, C2060HP, C2080HP, HB50.8, C2042HP, C2052HP, C2062HP, C2082HP, C2042H-HP, C2052H-HP, C2062H-HP, C2082H-HP
Stainless Steel Roller Chain Stainless Steel Conveyor Chain
Stainless Steel Roller Chains,Stainless Steel Conveyor chain, Stainless steel chain for bottle conveyor line that’s utilized on bottle filling conveyor lines, other typical ss chain or specific ss chains (SS304 chain, SS316 chains, SS316L chains, SS conveyor chains, SS304 conveyor chain, SS316 conveyor chain) all obtainable
Rust 304 Stainless Steel Chain/Lifting Chain
Rigging Hardware, Greater than 1000’s Assortment. Such as Connecting Hyperlink, Security Hook, Eye Hook, Clevis Hook, Master Hyperlink, Master Hyperlink Assembly, Etc.
Series Zinc plated Agricultural Transmission Chain for Feeder household Clear Grain
Attachment: K1, K5, K19, K30, K39, 220B, F4, F5, F14, F45, G18, TM91E, TM92, C6E, C11E, C13E, C30E, CPE, LV41N,
Surface Therapy: Shot-Peening, Zinc plated.
Application: broadly used in Feeder home, Clear Grain, Return Grain in agricultural machine.
CC600 Corrosion Resisting Cast iron Chain
Our CC 600 Conveyor chains are produced in malleable iron with steel pins, with pins which are unhardened. This proven design leads to an assembled chain which is very tough and put on resistant. Made withing the fuel bottling market (Exclusively Liquid Petroleum Fuel ) our CC600 series stays a product of initial selection for distributors and finish end users alike, where a quality item is required first time, each and every time. The CC600 chains are meant for use in multistrand conveyors handling individual loads underneath situations of mild corrosion. They can be normally supported in channels and therefore are remarkably flexible, permitting for fluid movement and flexibility when needed. This versatility enables them for being utilised within a selection of hefty duty applications but their primary application is in the bottling field in which they can be termed on to deal with crates and gasoline bottles.
focuses on making all sorts of mechanical transmission merchandise and hydraulic transmission items, such as planetary gearboxes
Chains are series of linked links or rings that are normally produced of metal and might be connected or fitted into one another. Just about every piece in the chain can have a lot more than a single website link dependent on its application. Some utilizes of chains is often for fastening, binding or supporting objects. The two most common variations of making chains are roller chains and those that are torus shaped. The kind of the chain depends upon the application of your chain. Torus shaped chains are very widespread in many applications. They can be used for hoisting, securing or supporting and also have a very easy shape of rings that are linked to each other. This very simple style and design gives these chains flexibility in two dimensions. Their basic layout and flexibility enable them for being made use of for several duties this kind of as securing a bicycle

Roller chains are very widespread in bicycles. They may be designed to transfer electrical power in machines. Taking bicycle chains such as, they’re intended to mesh together with the teeth of the sprockets of the machine. Versatility in these chains is also restricted because they can only move in one direction. Some frequent applications of chains is usually as crucial chains, snow chains and bicycle chains.
As stated earlier on this write-up, bicycle chains are roller chains. They transfer electrical power from pedals towards the drive-wheel that in flip propels the bicycle forward. These chains are ordinarily manufactured from plain carbon or an alloy of steel nevertheless some is usually nickel-plated to be able to prevent rust. These chains are also deemed to become really vitality efficient. Though numerous folks may perhaps assume the efficiency to become tremendously affected by the lubricant, a examine that was carried out inside a clean laboratory revealed that in lieu of lubricants, a larger sprocket would deliver a more productive drive. Also, the increased the tension inside the chain, the extra productive it would be.

ep

November 26, 2020

single row four stage speak to ball slewing rings is composed of two seat rings, which layout in compact framework and light fat, steel ball contact with all the circular raceway at 4 factors; it can bear the axial force, radial force as well as tilting second with the same time. Coresun drive Single-row 4 level speak to ball ring has the characteristics of compact in design, and light in excess weight. The balls roll within the circular race at four points, so it can undertake the axial force, radial force and tipping moment at the very same time. This series of 4 level get in touch with ball bearings are appropriate in many engineering machinery, like rotary conveyor welding operation machine, smaller cranes, small and medium-sized excavators,slewing conveyer, welding manipulator, light and medium duty crane, and various building machinery.
Three kinds of this sort of single row four point make contact with ball slewing bearing:
A. Devoid of gear bearing (non tooth)
B. External gear bearing (external tooth)
C. Internal gear bearing (internal tooth)

double row various diameter ball slewing bearing is largely produced up of in-up ring, in-down ring and outdoors ring, so balls and spacers is usually straight discharged into the upper and reduce raceway. According to tension problems, bearings are arranged to two rows of balls of different diameter. This assembly is extremely practical. Angle of each upper and lower raceway is 90??so bearings can bear huge axial force and resultant torque. Bearing requires exclusive layout when radial force is 0.one times greater compared to the axial force. Substantial in sizes and options compact in style, bearings are particularly application in managing equipments requiring medium over diameter, including tower crane and mobile crane.

single row cross roller slewing ring is largely manufactured up of inside and outdoors rings. It functions compact in layout, light in bodyweight, modest in assembling clearance, and large in installing precision. As the rollers are crossed arranged by 1:1, it’s appropriate for large precision mounting and capable to bear axial force, radial force and resultant torque concurrently. This series single row crossed roller slewing bearing have extensively application in lift transport aircraft, construction machinery, and military goods.
1. Experienced gears producer
two.Professional in Cooperate with massive Firms
three. Qualified gears Engineering Capability
4.Secure gears High quality
5.Acceptable gears Charges
6.Smaller gears Orders Accepted
7.Constant gears quality improvements
eight. Higher gears excellent Efficiency
9.Quick gears lead time and shipment
ten.Professional gears support
We will produce 6 styles of slewing bearings within a wide variety of specs with diameters ranging from 400 mm to 5050 mm. Our solutions prove every single day for being important structural and connection elements utilized in wind turbines, excavators, mobile cranes, harbor and shipyard cranes, robots, health care scanners and generally mechanical engineering.
Top quality Control:
Excellent could be the critical to our accomplishment. We’re committed to attaining customers’ fulfillment by giving high quality services and products.
We be sure that our in depth excellent management process is in accordance with ISO9001 common and is carried out successfully.
In pursuit of high-quality raw supplies, we undergo a stringent verification and variety process to pick the top suppliers of forged rings and various components in China. If expected, we will also apply added large-diameter forged rings made by ThyssenKrupp in Germany.
Cranes are uniquely constructed, which means the slewing ring bearing is an crucial element of its style. High-quality and precision throughout the manufacturing course of action.
Gear transmission refers to the gadget that transmits movement and energy through the gear pair. It’s the most extensively used mechanical transmission technique in contemporary gear. Its transmission is far more exact, substantial efficiency, compact structure, dependable operation and lengthy support existence.Our gears can be heat handled, hardened, oil immersed according to customer demands.The gear is broadly utilized in industry, vehicle, power tools, motor, bicycle, electrombile.

ep

November 23, 2020

Nylon gear racks is applied on sliding gate, There exists steel core within it. we exported to Europe in major quantity.
There exists steel core inside the nylon gear rack.There are two goods readily available. There are four eye(four bracket is light type) and 6 eyes(six brackets is hefty variety).Every piece of nylon gear rack with screw set
Producer supplier exporter of gear rack
We exported gear rack in large amount to Europe, America, Australia, Brazil, South Africa, Russia and so forth. There is certainly typical gear rack offered as well as special gear rack as per your drawing or samples. Our gear racks generated by CNC machines
There may be quite a few sizes of steel gears rack for sliding door also. M4 8?¨¢30, M4 9?¨¢30, M4 10?¨¢30, M4 11?¨¢30, M4 12?¨¢30, M4 20?¨¢20, M4 22?¨¢22, M6 30?¨¢30 and so on
For M4 8?¨¢30, M4 9?¨¢30, M4 10?¨¢30, M4 11?¨¢30, M4 12?¨¢30, 1M length have three bolt,nut, washer sets and each and every 4pcs or 6pcs packed into carton box then put into steel pallet. For M4 8?¨¢30, M4 9?¨¢30, M4 10?¨¢30, M4 11?¨¢30, M4 12?¨¢30, 2M length have 4 bolt,nut, washer sets.
We are able to also provide the sliding gate portion this kind of as sliding door pulley, wheel, roller and so on. Please kindly verify and allow me know your detail request
When you will need 2M or 3M, or any other length, we are able to develop as per your requests
The majority of our buyer will send us drawing and we are able to create as per your drawing or sample.
We develop Module M1-M8 racks, CP and DP British standard racks. The maximum length of the rack is 2 meters. Our solutions are broadly used in quite a few fields this kind of as automatic doors, window openers, engraving machines, lifters, escalators, automated warehousing, food machinery, power tools, machine resources, precision transmission, and so forth.

We exported gear rack in massive quantity to Europe, America, Australia, Brazil, South Africa, Russia and so forth. There is normal gear rack out there and also unique gear rack as per your drawing or samples. Our gear racks made by CNC machines.

Our gear racks are made use of for window machine, engraving machine, lift machine, opener rack, CNC machine, automobile, industrial utilization so on.
one) Our gear rack is created as per DIN requirements by CNC machine
two) The pressure angle: 20??/14.5??
three) Module: M0.4-M36/DP1-DP25
4) The utmost length is usually 3500mm
5) The materials can be Q235, C45, SS304, SS316L, aluminum, copper, nylon and so on.
Our gear racks are employed for window machine, engraving machine, lift machine, opener rack, CNC machine, automobile, industrial utilization so on.
Industrial Gear Rack
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

We can also provide Building lift gear rack,American normal gears racks,steel gear rack,helical gear rack,versatile gear racks,electrical power steering rack,steering gear rack ,stainless steel gear rack ,round rack gear ,nylon gear rack ,spur gear rack ,boston gear rack ,audia gear rack ,gears racks ,rack and pinion gear
1. Wealthy market knowledge since 1988.
two. Broad organize item line, like plastics sheet/rod/parts/accessories: MC NYLON, OIL NYLON, POM, UHMW-PE, PU, PETP, Computer, PTFE, PVDF, PPS, PEEK, PAI, PI, PBI ect.
three. Manufacture, layout and processing service as per your demand
1. Excellent Tensile strength;
two. Substantial impact and notching impact power;
3. High heat deflection temperature ;
4. Higher strength and stiffness;
5. Fantastic glide and limp home characters;
six. Very good chemical stability against organic solvents and fuels;
seven. Resistant to thermal aging (applicable temperature in between -50??C and 110??C;
8. Dimension alternation by humidity absorption have to be regarded as;

Shaft sleeve, bearing bush, lining, lining plate, gear;
Worm gear, roller copper manual rail, piston ring, seal ring, slide block;
Spheric bowl, impeller, blade, cam, nut, valve plate,
Pipe, stuffing box, rack, belt pulley, pump rotor, and so forth.rack pinion gear for elevator in stockoperator Steel and Nylon gear rack SPUR GEAR RACK AND PINION nylon gear rack iron gear rack We warmly welcome prospects each at your house and abroad to get hold of us to negotiate enterprise, exchange information and facts and cooperate with us.

ep

November 19, 2020

IN CNC GEAR Manufacturing PLANT, Above 10 OF GEARS Creating LINES:
Gear turning,hobbing,shaving,shaping,grinding,slotting,
broaching , we?¡¥ve produced considerable investment..

Our high precision equipment can retain a high excellent prodcuts.CAN DO All of the HEATING Approach: CARBURIZING/CARBONITRIDING/QUENCHING/NORMALIZING/ANNEALING/REHEATING
two sets of UBE series multi-purpose chamber(IQ) Japan furnace;
two sets of German Ipsen environment furnace lines.

9 ton of steel capacity for heat treatment method a day.
Low CARBON STEEL METAL GEARS Smaller,Small STEEL METAL SPUR GEARS!
From simple 2-axis turning to 7-axis, turn-mill-drill CNC Swiss-type machines, we are equipped by using a complete line of CNC equipment from the following manufactures:
molding machines/ stamping machines
automatic lathe machines/ spring machines.
Surface: as your necessity
OUR CLEANSES
1.Materials:C 45# steel ,stainless steel or other needed products.
two.Sprockets could be created according the customer?¡¥s drawings
Our most important solutions: Ultra substantial molecular fat polyethylene, MC nylon, PA6, POM, HDPE, PP,PU, Computer, PVC, ABS, ACRYLIC,PTFE, PEEK, PPS,PVDF.
three.Heat therapy: Hardening and Tempering, Large Frequency Quenching, Carburizing Quenching and so on in accordance the needs..

four. Inspection: All goods are checked and examined extensively throughout every single operating procedure and just after manufacturing will be reinspected.
Gear transmission refers to your gadget that transmits motion and power through the gear pair. It is actually one of the most extensively made use of mechanical transmission technique in modern day products. Its transmission is a lot more exact, large efficiency, compact construction, reliable operation and prolonged support existence.

Our gears can be heat treated, hardened, oil immersed according to purchaser wants.

The gear is extensively employed in sector, automobile, electrical power resources, motor, bicycle, electrombile.
Higher PRECISION Customized SPUR HELICAL GEAR
Spur gears are broadly accepted since the most efficient form of gearing alternative, when the application of transmitting energy and uniform rotary movement from 1 parallel shaft to a further is required. Determined by the center distance, spur gears produce a regular working velocity drive. This drive pace is often decreased or enhanced by the variable number of teeth that exist within the driving gear.
Type: BEVEL GEAR
Manufacturing Approach: Minimize Gear
Toothed Portion Form: Bevel Wheel
Principal Purchaser: Electric instrument factory
Export Markets: Worldwide
Small PINION STEEL DOUBLE SPUR GEAR
Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing,
ELECTROPLATING, ANODIZING Etc.
Black oxide coating, painting, powdering, colour zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic,We will make customers?¡¥ satisfactory products in accordance on the samples or drawings provided by buyers. To the completion of a product or service, we also need to learn his materials, heat therapy prerequisites and surface treatment requirements. We are a factory with 40 many years of manufacturing encounter, welcome to check with.
we make use of the most recent machining engineering which has a wide selection of capabilities to meet your demands. Our manufacturing services include 3-5 axis milling, lathes, grinding, and so forth, and state on the artwork metrology. With these machines, we create complicated elements during the most effective and correct way. Our manufacturing capabilities enable us to create your element from prototype to mass manufacturing for the most precise of jobs.
gear box,gearbox,automated gearbox,gearbox parts,gearbox repairs,steering gear box,reduction gearbox,worm gear,motor gearbox,car gearbox,gearbox shop,worm gear box,gearbox companies,box gear,planetary gear box,tiny gearbox,helical gearbox,dc gear motor,gear motor,gear reducer,helical gear box,vehicle gear box,gearbox gears,transmission gearbox,reduction gear box,planetary gear,gearbox transmission,car or truck transmission,used gearbox for sale,worm gear motor,made use of gearbox,worm gear reducer,transmission gears,planetary gear reducer,substitute gearbox,mini gearbox

ep

November 18, 2020

PTO is really a splined drive shaft that is commonly placed on tractors or might be utilised to provide power backup to a separate machine.

The PTO shafts that we supply comprises of two carden joints and telescopic couplings. Tractor side and implement side would be the two ends of those shafts. The apply side includes a shear bolt kind yoke and includes safety guards.
one, Material: Carbon steel/ stainless steel/ aluminum alloy/ copper/bronze/iron/etc.

two, OEM or as per sample or drawing

3, Surface: Blacking, Polishing, Anodize, Chrome plating, Zinc plating, Nickel plating, Tinting, Power coating etc.

4, Procedure: Forging, Stamping, Machining, Metalworking, Sheet Metal Bending, Surface Remedy, Heat Treatment method, Gridding, Milling, wire EDM, Linear Cutting etc.

5, Precision: OEM/ODM is available
The energy take-off (PTO) is usually a sophisticated mechanism, making it possible for implements to draw power in the engine and transmit it to another application. It works like a mechanical gearbox which might be mounted about the vehicle?¡¥s transmission.
CHINA FACTORY LARGEBRASS MILLING AND ALUMINUM CASTING MOLDS Manufacturer
We are the manufacturer to produce Japanese tractor spare parts,in particular for kubota,iseki,yanmar,and so forth.
We are supplying and exporting Japanese tractor components since the following versions
¡§C Kubota model: B5000, B7000, B1400, B1600
¡§C YM model: YM F14, YM1100, YM F1401/1901,YM F35
¡§C Iseki model: TX1300, TX1410,TU1400-1500
UNIVERSAL JOINT MECHANICAL COMPORENTS MACHINE TRACTOR PTO SHAFT Parts UNIVERSAL JOINT
Tubes or Pipes

We?¡¥ve already got Triangular profile tube and Lemon profile tube for the many series we supply.

And we have now some star tube, splined tube and also other profile tubes but only to get a certain sizes.
We specializing during the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.
five End yokes

We’ve got 13 types of splined yokes and eight styles of plain bore yokes. I will recommend the normal kind to your reference.

You are able to also send drawings or photographs to us if you can’t find your item in our catalog.

6 Security gadgets or clutches

I will attach the information of safety units to your reference. We have by now have Free wheel (RA), Ratchet torque limiter(SA), Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

7 For just about any other far more exclusive specifications with plastic guard, connection process, colour of painting, bundle, and so on., please truly feel no cost to let me know.
The Gearboxes are intended for connecting gear pumps to farm tractor energy consider offs (PTO). Output pace of power consider offs is 540rpm which can be in contrast with the right running speeds of hydraulic pumps. Distinctive input running speeds may also be appropriate,provided the PTO gearbox output speed won’t exceed 3000 rpm.
Housing
Created in shell-cast aluminum or in higher mechanical resistance cast iron.
Torques
The torque figures talked about while in the technical charts of each of the PTO Gearboxes refer to continuous duty cycles. Torques beneath intermittent functioning situations could be exceeded by 20%.
Maintenance
Please test the oil level by means of the special oil window each 50 hours. Operating temperatures should not exceed 120 degrees celcius under continuos duty cycle.
one. Tubes or Pipes
We’ve currently got Triangular profile tube and Lemon profile tube for every one of the series we give.
And we have now some star tube, splined tube along with other profile tubes demanded by our customers (for any certain series). (Please notice that our catalog doesnt have the many goods we produce)
If you would like tubes other than triangular or lemon, please present drawings or pictures.

2.Finish yokes
We’ve got quite a few varieties of swift release yokes and plain bore yoke. I’ll recommend the normal sort for your reference.
You’ll be able to also send drawings or pictures to us in the event you can’t uncover your item in our catalog.

three. Security units or clutches
I will attach the particulars of safety products for the reference. We have by now have Cost-free wheel (RA), Ratchet torque limiter(SA), Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

four.For almost any other more particular necessities with plastic guard, connection approach, color of painting, bundle, etc., please feel absolutely free to let me know.

Capabilities:
1. We’ve got been specialized in developing, manufacturing drive shaft, steering coupler shaft, universal joints, which have exported for the USA, Europe, Australia and so forth for a long time
two. Application to all varieties of common mechanical condition
3. Our products are of substantial intensity and rigidity.
4. Heat resistant & Acid resistant
five. OEM orders are welcomed
The Gearboxes are intended for connecting gear pumps to farm tractor power get offs (PTO).Output speed of energy consider offs is 540rpm which can be compared together with the proper running speeds of hydraulic pumps.Distinct input running speeds could also be ideal,presented the PTO gearbox output speed will not exceed 3000 rpm.

Gears
Created in Steel UNI 18 PCR M03.Stub teeth guarantee very substantial resistance and run very quietly.

Shafts
Produced in steel UNI 16 CRN4.They are coupled with splined gears and are made to stand the torque values stated while in the catalogue.

Lubrication
90 gear oil must be put during the pto gearbox prior to use, change the oil after the first 60-80 hrs and then every 12 months or 1500 hrs which ever falls first.

Upkeep
Please check out the oil level via the distinctive oil window just about every 50 hours.Doing work temperatures should really not exceed 120 degrees celcius under continuos duty cycle.

ep

November 17, 2020

Manufacturer supplier exporter of bush chains

We specializing from the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.
Taper Lock Pulley V Belt Pulley
We give substantial excellent Taper Lock Pulley V Belt Pulley in competitive rate
v pulley, v belt pulleys, taper lock pulley,v belt pulleys ,v pulley,v groove pulleys,v groove belt pulley,taper lock pulley,taper lock v belt pulleys,taper lock bushing pulley,taper lock pulleys/ taper bore pulley,huge v belts pulley,double v belts pulley,cast iron v belt pulleys belt pulley,variable pace v belt pulley,v belt pulley split pulley,cast iron v belts pulley
V-BELT PULLEY INTRODUCE:
V- belt pulley of various sorts ( as outlined by variety and width of belts). The materials utilized is cast iron EN-GJL-250 UNI EN 1561, and for only a handful of styles it can be steel C45 E UNI EN 10083-1. They have a small prebore that could be machined as outlined by customers?¡¥ needs. In addition essentially the most prevalent forms are available also with taperlock bore.
V BELT PULLEY Specifications
a) Vbelt pulley for taper bushing: SPZ, SPA, SPB, SPC
b) Adjustable pace V-belt pulleys and variable pace pulleys c) Flat belt pulleys and conveyor belt pulleys
?¡è AMERICAN Conventional:
a) Sheaves for taper bushing: 3V, 5V, 8V
b) Sheaves for QD bushings: 3V, 5V, 8V
c) Sheaves for split taper bushing: 3V, 5V, 8V
?¡è We will Provide THE RANG Dimension DIAMETER 62MM~2000MM
d) Sheaves for 3L, 4L or maybe a, and 5L or B belts: AK, AKH,2AK, 2AKH, BK, BKH,2BK, 2BKH, 3BK e) Adjustable sheaves: poly V-pulley, multi-pitch H, L, J, K and M
Top quality Timing Pulley Light Bodyweight Industrial Nylon Plastic Pulley V Belt Pulley
one.Material: Aluminium alloy,Carton steel, Cast iron, Stainless steel timing belt pulleys
2.Surface treament: vpulley Anodizing, Blackening, Zinc Plating, Phosphatiing
3. Teeth Number from 9 to 216; O.D. from 10mm to 1000mm;
4. Timing belt pulleys MXL, XL, L, H and XH; T2.5, T5, T10, AT5,AT10; 3M,5M,8M and 14M S3M, S5M, S8M, 14MGT, 8MGT, RPP8M
five. Taper bush and polit bores
six. Timing pulley bar 3M,5M,8M,MXL,XL,L T2.five T5 T10 AT5 and AT10
one) Reliable style and design, suitable for heavy lifting.
2) The bearing housing and steel tube are assembled and welded with a concentric automated.
car
four) The bearing end is constructed to ensure that the roller shaft and bearing might be firmly connected.
air compressors
6) Roller and supporting components/materials are manufactured to DIN/ AFNOR/ FEM/ ASTM/ CEMA common.
belt conveyor drive drum pulley
About roller,we can make gravity conveyor roller,steel conveyor roller,driving roller,light middle duty conveyor roller,o-belt tapered sleeve roller,gravity tapered roller,polymer sprocket roller and so on. More information, please get in touch with us.
Is often applied for tractors
3) Cutting of your steel tube and bearing is performed together with the use of a digital automobile device/machine/equipment..
garden cutter
5) Fabrication of the roller is effected by an automobile device and 100% examined for its concentricity.
welcome your inquiries
7) The casing is produced with hugely composite, anti corrosive alloy.
one) European specifications :
a) V-belt pulley for taper bushing: SPZ, SPA, SPB, SPC; up to 10 grooves

b) Adjustable velocity V-belt pulleys and variable pace pulley

c) Flat belt pulleys and conveyor belt pulleys

two) American standards:

a) Sheaves for taper bushing: 3V, 5V, 8V

b) Sheaves for QD bushings: 3V, 5V, 8V

c) Sheaves for split taper bushing: 3V, 5V, 8V

d) Sheaves for 3L, 4L or a, and 5L or B belts: AK, AKH, 2AK, 2AKH, BK, BKH,2BK, 2BKH, 3BK

e) Adjustable sheave: poly V-pulley, multi-pitch H, L, J, K and M
Why Decide on Us
one) Encounter in casting for above 15 many years and served prospects all all over the planet.
two) Common materials in accordance with technical drawing
3)Stable high quality
four) On-time delivery
5) Competitive value and very good services
6) Favourable customer feedback from domestic and global marketplace
7) Global advanced-level gear including CNC, numerical lathes, furnance, welding
tools, CMM and detect &testing tools we utilized to make certain our product?¡¥s quality.
8) OEM service, your demand is our pursued.
9) ISO9001:2008 and TS16949 good quality control
ten) Standard: ASTM BS DIN etc

ep

November 16, 2020

Bush Chains
As considered one of main motor coupling suppliers, suppliers and exporters of mechanical solutions, We provide bush chains and lots of other items.
Manufacturer supplier exporter of bush chains
We specializing in the manufacturing of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.
We have exported our solutions to clients close to the world and earned a good status since of our superior product top quality and after-sales support.
We warmly welcome prospects each in your house and abroad to speak to us to negotiate small business, exchange info and cooperate with us.
we are one particular experienced chain factory ,producing both common roller chains and nonstandard chains,A and B series roller chain,straight side roller chain,H series of roller chain, motocycle chain ,other roller chain .
Zinc-plated,Nickel-plated,Docromet-plated etc.Comply using the common of ANSI,ISO,DIN,BSetc.as well as with unique attachment. Excellent can be assured!
Our items have passed ISO:9001 excellent management procedure and stand the finish users?¡¥ ordeal. We devote ourselves to manufacture the high-quality merchandise with competitive costs, we know the industries properly, thus from design and style to material choice, till manufacturing method is up to the high conventional, meanwhile our planning staff and global workforce will make sure the punctual delivery.
Timing Bush Chains for Automobile Engine
1. Material: Stainless steel / Alloy steel / Created to buy
two. Surface Therapy: Zinc-Plated / Nickel-Plated / Shot Peening / Blackening
3. Chain Type: Roller chains, Drive chains,Conveyor Chains, Hollow Pin Chains,Welded chains, Steel Pin Chains, Palm oil chains,Sugar Mill Chains.ect.
Transmission Precision Bush Chains
A lifting chain is rigging tools used with hoists, cranes, and winches in material dealing with applications. An arrangement named a chain sling is often utilized as the lifting part connecting the hoisting device on the load. A chain sling includes a master link and one particular or much more chain legs with hooks.
Transmission Precision Roller and Bush Chains
Made use of industrial transmission roller chains;Industrial and agricultural machinery, including conveyors,wire¡§C and tube¡§Cdrawing machines, printing presses, automobiles, motorcycles, and bicycles.It consists of a series of short cylindrical rollers held together by side backlinks.It really is a straightforward, dependable, and productive signifies of energy transmission.
Excellent orientation: Above the typical, largely exported to USA, Europe, Asia and so on.
Strictly in accordance: ISO/ANSI/DIN regular.
Price orientation: Price-performance ratio is quite large.
Stainless Steel Hollow Pin Bush Chains Conveyor Chain Roller transmission bush double flex chain Side Bow Chain The Sleeve Chain/ Bush Chain/motorcycle chain higher power bucket elevator conveyor bush roller chain
We’re experienced supplier of chains
Multi strand sizes readily available; up to five strand, for pick dimension common attachment available
10.Chains from 04b~16b are with spring clip, other are riveted; cottered style
is obtainable for size 80 to 240
Stainless steel chain and nickel plated chains is available; particular design and style also offered
(i.e., oven conveyor) and we are able to develop as per material your requests, usually stainless steel chains materials is SS304, should you want SS316 or SS316L and so forth. it really is offered also
This bush chain that has a decreased variety of components, has proved to be specifically prosperous in high duty, large abrasion application wherever lubrication is just not possible. Our steel bush chains have already been proving effectiveness in mill duty centrifugal discharge elevators inside the harder applications encountered inside the cement field.

China Custom Three Phase Horizontal Brake Motor with Reduction Box Type AC Induction Motor manufacturer

Product Description

 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Single-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brake motor

How do brake motors ensure smooth and controlled movement in equipment?

Brake motors play a crucial role in ensuring smooth and controlled movement in equipment by providing reliable braking functionality. They work in coordination with the motor and other control systems to achieve precise control over the motion of the equipment. Here’s a detailed explanation of how brake motors ensure smooth and controlled movement in equipment:

  • Braking Capability: Brake motors are specifically designed to provide effective braking capability. When the power to the motor is cut off or when a braking signal is applied, the brake system engages, generating frictional forces that slow down and bring the equipment to a controlled stop. The brake torque generated by the motor helps prevent coasting or unintended movement, ensuring smooth and controlled deceleration.
  • Quick Response Time: Brake motors are engineered to have a quick response time, meaning that the brake engages rapidly once the control signal is applied. This quick response time allows for prompt and precise control over the movement of the equipment. By minimizing the delay between the initiation of the braking action and the actual engagement of the brake, brake motors contribute to smooth and controlled movement.
  • Adjustable Brake Torque: Brake motors often offer the ability to adjust the brake torque to suit the specific requirements of the equipment and application. The brake torque can be tailored to the load characteristics and operating conditions to achieve optimal braking performance. By adjusting the brake torque, brake motors ensure that the equipment decelerates smoothly and consistently, avoiding abrupt stops or jerky movements.
  • Brake Release Mechanisms: In addition to providing braking action, brake motors incorporate mechanisms to release the brake when the equipment needs to resume motion. These release mechanisms can be controlled manually or automatically, depending on the application. The controlled release of the brake ensures that the equipment starts moving smoothly and gradually, allowing for controlled acceleration.
  • Integration with Control Systems: Brake motors are integrated into the overall control systems of the equipment to achieve coordinated and synchronized movement. They work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to precisely control the speed, acceleration, and deceleration of the equipment. By seamlessly integrating with the control systems, brake motors contribute to the smooth and controlled movement of the equipment.
  • Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with safety standards and regulations. They undergo rigorous testing and quality control measures to ensure reliable and consistent braking performance. By adhering to safety standards, brake motors help prevent sudden or uncontrolled movements that could pose a safety risk and ensure the equipment operates within acceptable limits.

By providing effective braking capability, quick response time, adjustable brake torque, release mechanisms, integration with control systems, and compliance with safety standards, brake motors ensure smooth and controlled movement in equipment. They enable precise control over the deceleration, stopping, and starting of the equipment, enhancing operational efficiency, safety, and overall performance.

brake motor

What factors should be considered when selecting the right brake motor for a task?

When selecting the right brake motor for a task, several factors should be carefully considered to ensure optimal performance and compatibility with the specific application requirements. These factors help determine the suitability of the brake motor for the intended task and play a crucial role in achieving efficient and reliable operation. Here’s a detailed explanation of the key factors that should be considered when selecting a brake motor:

1. Load Characteristics: The characteristics of the load being driven by the brake motor are essential considerations. Factors such as load size, weight, and inertia influence the torque, power, and braking requirements of the motor. It is crucial to accurately assess the load characteristics to select a brake motor with the appropriate power rating, torque capacity, and braking capability to handle the specific load requirements effectively.

2. Stopping Requirements: The desired stopping performance of the brake motor is another critical factor to consider. Different applications may have specific stopping time, speed, or precision requirements. The brake motor should be selected based on its ability to meet these stopping requirements, such as adjustable braking torque, controlled response time, and stability during stopping. Understanding the desired stopping behavior is crucial for selecting a brake motor that can provide the necessary control and accuracy.

3. Environmental Conditions: The operating environment in which the brake motor will be installed plays a significant role in its selection. Factors such as temperature, humidity, dust, vibration, and corrosive substances can affect the performance and lifespan of the motor. It is essential to choose a brake motor that is designed to withstand the specific environmental conditions of the application, ensuring reliable and durable operation over time.

4. Mounting and Space Constraints: The available space and mounting requirements should be considered when selecting a brake motor. The physical dimensions and mounting options of the motor should align with the space constraints and mounting configuration of the application. It is crucial to ensure that the brake motor can be properly installed and integrated into the existing machinery or system without compromising the performance or safety of the overall setup.

5. Power Supply: The availability and characteristics of the power supply should be taken into account. The voltage, frequency, and power quality of the electrical supply should match the specifications of the brake motor. It is important to consider factors such as single-phase or three-phase power supply, voltage fluctuations, and compatibility with other electrical components to ensure proper operation and avoid electrical issues or motor damage.

6. Brake Type and Design: Different brake types, such as electromagnetic brakes or spring-loaded brakes, offer specific advantages and considerations. The choice of brake type should align with the requirements of the application, taking into account factors such as braking torque, response time, and reliability. The design features of the brake, such as braking surface area, cooling methods, and wear indicators, should also be evaluated to ensure efficient and long-lasting braking performance.

7. Regulatory and Safety Standards: Compliance with applicable regulatory and safety standards is crucial when selecting a brake motor. Depending on the industry and application, specific standards and certifications may be required. It is essential to choose a brake motor that meets the necessary standards and safety requirements to ensure the protection of personnel, equipment, and compliance with legal obligations.

8. Cost and Lifecycle Considerations: Finally, the cost-effectiveness and lifecycle considerations should be evaluated. This includes factors such as initial investment, maintenance requirements, expected lifespan, and availability of spare parts. It is important to strike a balance between upfront costs and long-term reliability, selecting a brake motor that offers a favorable cost-to-performance ratio and aligns with the expected lifecycle and maintenance budget.

Considering these factors when selecting a brake motor helps ensure that the chosen motor is well-suited for the intended task, provides reliable and efficient operation, and meets the specific requirements of the application. Proper evaluation and assessment of these factors contribute to the overall success and performance of the brake motor in its designated task.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China Custom Three Phase Horizontal Brake Motor with Reduction Box Type AC Induction Motor   manufacturer China Custom Three Phase Horizontal Brake Motor with Reduction Box Type AC Induction Motor   manufacturer
editor by CX 2024-05-14

China manufacturer Three Phase Vertical or Horizontal Reducer Motor with Brake Reducer Box Type 380V 60Hz vacuum pump belt

Product Description

 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Single-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brake motor

How do brake motors impact the overall productivity of manufacturing processes?

Brake motors have a significant impact on the overall productivity of manufacturing processes by enhancing operational efficiency, improving safety, and enabling precise control over motion. They play a crucial role in ensuring smooth and controlled movement, which is vital for the seamless operation of machinery and equipment. Here’s a detailed explanation of how brake motors impact the overall productivity of manufacturing processes:

  • Precise Control and Positioning: Brake motors enable precise control over the speed, acceleration, and deceleration of machinery and equipment. This precise control allows for accurate positioning, alignment, and synchronization of various components, resulting in improved product quality and reduced errors. The ability to precisely control the motion enhances the overall productivity of manufacturing processes by minimizing waste, rework, and downtime.
  • Quick Deceleration and Stopping: Brake motors provide fast and controlled deceleration and stopping capabilities. This is particularly important in manufacturing processes that require frequent changes in speed or direction. The ability to rapidly decelerate and stop equipment allows for efficient handling of workpieces, quick tool changes, and seamless transitions between manufacturing steps. It reduces cycle times and improves overall productivity by minimizing unnecessary delays and optimizing throughput.
  • Improved Safety: Brake motors enhance safety in manufacturing processes by providing reliable braking functionality. They help prevent coasting or unintended movement of equipment when power is cut off or during emergency situations. The braking capability of brake motors contributes to the safe operation of machinery, protects personnel, and prevents damage to equipment or workpieces. By ensuring a safe working environment, brake motors help maintain uninterrupted production and minimize the risk of accidents or injuries.
  • Enhanced Equipment Performance: The integration of brake motors into manufacturing equipment improves overall performance. Brake motors work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to optimize motor operation. This integration allows for efficient power utilization, reduced energy consumption, and improved responsiveness. By maximizing equipment performance, brake motors contribute to higher productivity, lower operational costs, and increased output.
  • Reduced Downtime and Maintenance: Brake motors are designed for durability and reliability, reducing the need for frequent maintenance and minimizing downtime. The robust construction and high-quality components of brake motors ensure long service life and consistent performance. This reliability translates into fewer unplanned shutdowns, reduced maintenance requirements, and improved overall equipment availability. By minimizing downtime and maintenance-related interruptions, brake motors contribute to increased productivity and manufacturing efficiency.
  • Flexibility and Adaptability: Brake motors offer flexibility and adaptability in manufacturing processes. They can be integrated into various types of machinery and equipment, spanning different industries and applications. Brake motors can be customized to meet specific requirements, such as adjusting brake torque or incorporating specific control algorithms. This adaptability allows manufacturers to optimize their processes, accommodate changing production needs, and increase overall productivity.

In summary, brake motors impact the overall productivity of manufacturing processes by providing precise control and positioning, enabling quick deceleration and stopping, improving safety, enhancing equipment performance, reducing downtime and maintenance, and offering flexibility and adaptability. Their role in ensuring smooth and controlled movement, combined with their reliable braking functionality, contributes to efficient and seamless manufacturing operations, ultimately leading to increased productivity, improved product quality, and cost savings.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here’s a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China manufacturer Three Phase Vertical or Horizontal Reducer Motor with Brake Reducer Box Type 380V 60Hz   vacuum pump belt	China manufacturer Three Phase Vertical or Horizontal Reducer Motor with Brake Reducer Box Type 380V 60Hz   vacuum pump belt
editor by CX 2024-05-14

China OEM 24V 36V 48V NEMA BLDC Brushless DC Electric Motor Brake Encoder UL CE RoHS a/c vacuum pump

Product Description

Product Description

IC.H-Brushless DC Motor with High Power

Applications:

Widely used lots of applications, such as machine tools, medical machinery, electric car, electric machine tool, Variable wind pressure fan machine, CNC machine spindle motor, etc.

Features:

1. The ability to absorb noise and anti-shake and eliminate heat is excellent
2. With well-functioning, low hazard rate, and long life span, low noise, low power consumption, high efficiency, adjustable speed, low cost, high performance, and timely customer service
3.Rear-earth permanent-magnet, Brushless DC motor, with super high power density high Efficiency and reliability

Drawing:

42MM

52MM

60MM

62MM

70MM

86MM

110MM

Electrical Specification:
 

SERIES Figure Size Rated power Rated voltage Current Number of poles   Rated speed Rated torque Peek torque Moment constant Length Weight
W VDC A rpm N. cm N. cm N. cm/A mm Kg
D42 42mm 32 ~64 24 ~36 1. 8 ~2.4 4,8 0~ 3000 10 ~20 35 ~70 5.7 ~8.5 49~68 0.35 ~0.55
D52 52mm 50 24 2.6   0~3500 13     100  
D57 57mm 47~140 36 1.8~5.3 4 0~3000 15~45 53~156 8.7 52~92 0.55~1.1
D60 60mm 78~235 36~48 3~6.6 8 0~3000 50~250 87.5~263 8.7~11.5 78~120 0.9~1.6
D70 70mm 156~313 36~48 5.8~8.8 8 0~3000 50~100 175~350 8.7~11.5 86~116 1.3~2.1
D80 80mm 220~500 36~310 1.1~8.2 4 0~3000 70~160 245~560 8.7~74.1 78~171 1.7~2.95
D86 86mm 220~660 36~310 1.8~6.3 4,8 3000~5000 70~210 245~735 11.3~74 97~150 1.85~4.5
D92 92mm 24~300 150~1100 0.9~43   1500~18000 10~367     70~150 1.74~4.12
D110 110mm 785~1250 310 3.4~5.4 8 2000~2500 300~600 1050~2100 89~112 138~198 4.5~7
D123 123mm 1100~2200 150~300 4.8~13.3   1500~6000 250~730     100~195 7.875~9.51
*Note: We can customize the special speed, Voltage, Assembled size. High speed at 4 poles (Conventional). Low speed at 8 poles

Company Profile

 

PROFESSIONAL MOTOR MANUFACTURER

Founded in 2006, I.CH is a professional Micro Metal Gear Motor factory over 16years. We have worked with over 50 countries’ customers arround world. We have over 20 patents in gearbox field.

We focus on the development of planetary gearbox and matched different type of motors, such as DC brush motor, Brushless DC Motor, Stepper Motor and Servo Motor. Custom Service for micro gear motor with encoder and dual shaft in special specification, The light weight with high torque and low speed is widely used in a variety of industrial, home application and hobby appliance.

16+

Experience

50+

Countrie’s Customers

                       20+

                                    Patents

                      1000+

                                       Factory Area

Certifications

Customer Visiting

 

 

Factory Ability

Packaging & Shipping

-Pack by PE foam in cartons, crates and pallets;
-Shipping via sea, air, courier;
-Lead-time: 3-8 weeks.

Related Products

 

FAQ
Q1. What phase is this stepping motor?
A: It is 2 phase with 1.8deg.
 
Q2. What is frame size for NEMA 8 Step Geared motor?
A: It is 20mm*20mm size.
 
Q3. I need a non-standard motor for my application, can you help?
A: Certainly, most of our customers request custom configurations in 1 form or another. If you plan on replacing a motor in an existing application, just send us a drawing or sample and we can help you find a suitable replacement. Alternatively, contact us and describe your application, our engineers will work with you to create a solution tailor-made for you.

Q4:How can I get your quotation of electrical step engine?
A:Please send us the details of the stepper motors you are in need of, also includes the quantity. 

Q. What are your Stepper Motors can be use to?
A: Our step motors can be use in CNC routers, CNC milling machine, engraving machine, packaging machine, filling machine, cutting machine, printing machine, laser machine, carving machine, labeling machine, CCTV and robot.
 
Q. What kind of Payment methods do you accept?
A: We can accept Paypal and , TT.
 
Q: What kind of shipping methods do you use?
A:1) For samples or small batch of micro stepper motor, air shipping is recommended. (DHL, Fedex, TNT, UPS, EMS), We will provide the tracking No. Once we get it after we ship out the products. 
2)For mass production or big batch of stepping motors, CHINAMFG shipping/sea shipment is recommended . 
 
Q: What is the lead time of stepper motors?
A: For mass production, the lead time depends on the quantities you need .
 
Q: What is your warranty time?
A: Warranty time: 12 months. And we provide life-long technical service and after-sale service.
 
Q: Can you make customized shaft?
A: We can make single shaft, double shaft or other shape.
 
Q: What is NEMA size of this motor?
A: It is NEMA 8 with 1.8 degree or 0.9 degree.

Q: What it the application for NEMA 8 StepperGeared Motor
A: It could used as 3D Printer motor. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Structure and Working Principle: Brushless
Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here’s a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor’s shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor’s level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China OEM 24V 36V 48V NEMA BLDC Brushless DC Electric Motor Brake Encoder UL CE RoHS   a/c vacuum pump		China OEM 24V 36V 48V NEMA BLDC Brushless DC Electric Motor Brake Encoder UL CE RoHS   a/c vacuum pump
editor by CX 2024-05-14

China factory ZD Variable-Speed 3~ 750K Reduction Ratio Electric AC Brake Gear Motor vacuum pump adapter

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters

Features:

1) Dimensions: 90mm
2) Power: 60, 90, 120W
3) Voltage: 110V, 220V
4) Speed:
50Hz: 90~ 1350rpm
60Hz: 90~ 1650rpm
5) Reduction ratio: 3~ 750K
 

Gearhead Model Gear Ratio
5GN *K 3,3.6,5,6,7.5,9,12.5,15,18,25,30,36,50,60,75,90,100,120,150,180,200~750
5GN10XK(Decimal gearhead)

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here’s a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor’s shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor’s level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China factory ZD Variable-Speed 3~ 750K Reduction Ratio Electric AC Brake Gear Motor   vacuum pump adapter	China factory ZD Variable-Speed 3~ 750K Reduction Ratio Electric AC Brake Gear Motor   vacuum pump adapter
editor by CX 2024-05-14

China high quality CHINAMFG BLDC Motor Manufacturer 12V 3000 Rpm 100W Electric BLDC Motor Brushless 48 Volts BLDC Motor with Brake with Best Sales

Product Description

Product Description

Feature: 

A. High power range from 5W to 20KW
B. Rich stock and fast shipping time in 10 working days
C. Easy for speed & direction adjustment
D. 16mm to 220mm size range with low noisy
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller

Rated power(W) Rated voltag(V) Rated speed(r/min) Rated torque(N.m)  Rated current(A)  L=Motor length(mm)
100W  DC24V  3000r/min  0.32 5.21A 75mm

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 31/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

How do brake motors handle variations in brake torque and response time?

Brake motors are designed to handle variations in brake torque and response time to ensure reliable and efficient braking performance. These variations can arise due to different operating conditions, load characteristics, or specific application requirements. Here’s a detailed explanation of how brake motors handle variations in brake torque and response time:

  • Brake Design and Construction: The design and construction of brake systems in brake motors play a crucial role in handling variations in brake torque and response time. Brake systems typically consist of brake pads or shoes that press against a brake disc or drum to generate frictional forces and provide braking action. The materials used for the brake components, such as brake linings, can be selected or designed to offer a wide range of torque capacities and response characteristics. By choosing the appropriate materials and optimizing the brake system design, brake motors can accommodate variations in torque requirements and response times.
  • Brake Control Mechanisms: Brake motors employ different control mechanisms to manage brake torque and response time. These mechanisms can be mechanical, electrical, or a combination of both. Mechanical control mechanisms often utilize springs or levers to apply and release the brake, while electrical control mechanisms rely on electromagnets or solenoids to engage or disengage the brake. The control mechanisms can be adjusted or configured to modulate the brake torque and response time based on the specific needs of the application.
  • Brake Torque Adjustments: Brake motors may offer provisions for adjusting the brake torque to accommodate variations in load requirements. This can be achieved through the selection of different brake linings or by adjusting the spring tension or magnetic force within the brake system. By modifying the brake torque, brake motors can provide the necessary braking force to meet the demands of different operating conditions or load characteristics.
  • Response Time Optimization: Brake motors can be engineered to optimize the response time of the braking system. The response time refers to the time it takes for the brake to engage or disengage once the control signal is applied. Several factors can influence the response time, including the design of the control mechanism, the characteristics of the brake linings, and the braking system’s overall dynamics. By fine-tuning these factors, brake motors can achieve faster or slower response times as required by the application, ensuring effective and timely braking action.
  • Electronic Control Systems: In modern brake motors, electronic control systems are often employed to enhance the flexibility and precision of brake torque and response time adjustments. These systems utilize sensors, feedback mechanisms, and advanced control algorithms to monitor and regulate the brake performance. Electronic control allows for real-time adjustments and precise control of the brake torque and response time, making brake motors more adaptable to variations in operating conditions and load requirements.

By combining appropriate brake design and construction, control mechanisms, torque adjustments, response time optimization, and electronic control systems, brake motors can effectively handle variations in brake torque and response time. This enables them to provide reliable and efficient braking performance across a wide range of operating conditions, load characteristics, and application requirements.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor’s moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer’s recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor’s vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor’s speed and torque. Follow the manufacturer’s guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor’s lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China high quality CHINAMFG BLDC Motor Manufacturer 12V 3000 Rpm 100W Electric BLDC Motor Brushless 48 Volts BLDC Motor with Brake   with Best Sales China high quality CHINAMFG BLDC Motor Manufacturer 12V 3000 Rpm 100W Electric BLDC Motor Brushless 48 Volts BLDC Motor with Brake   with Best Sales
editor by CX 2024-05-13

China manufacturer Cost Effective 3000W 48V Servo Motor Agv DC AC Motor with Brake for Industry Agv Robot with Best Sales

Product Description

Product Parameters

Model MDNM-130-3000-48
Power 3000W
Rate Voltage 48V
Rate Current 70A
Rate Speed 3000 r/min
Rate Torque 9.6 Nm
Peak Torque 28.8 Nm
Insulation Class Class B
Maximum speed 3300R/Min

Dimensions

Certifications

Company Profile

   ZHangZhoug CHINAMFG Technology Co., Ltd founded 2015, in ZHangZhouG designs, manufactures and sells agv, driving wheel assembly, DC/AC motors, encoder, reducer, controller, caster wheel, gear, Pu wheel, motor in wheel units and all over the world.
   TZBOT continues to bring excellent products, technological innovation and ease of customizing to the automated equipment.
   The factory, is 1000 sq. feet, and employs 50 people. The company is certified to ISO9001:2015.
   The core to TZBOT’s growth is the constant dedication to the pursuit of full customer satisfaction. They have a strong presence in domestic and international markets, as well as, great production flexibility. CHINAMFG has come to be recognized as 1 of the biggest suppliers of electric drive.
Continued investment in the most modern machinery has further increased and developed the quality and flexibility of each product.
   Today, CHINAMFG can quickly design and produce engines and special parts request from customers.
   TZBOT’s product are used in a myriad of application, including but not limited to: Forklifts, AGV, Aerial Platforms, Airport Machines, Agricultural Machines, Hydraulic Applications, Floor Scrubbers, Sweepers, Wind Energy, Marine, and in the field of Medical Devices.
   All prototypes are tested for extended periods of time to verify the quality and the duration will work perfectly before sending production parts to customers. Due diligence is paramount to the satisfaction of our customers.

FAQ

Q: Payment
A: Our payment is T/T, Paypal, West Union, Trade Assurance(Ali pay or E-check), L/C, and D/P.

Q: After-sale service
A: For assured quality all products, we check all products’ quantity twice. The first time is end of production, the second time is before packing into cartons. If any negligence or accident about our goods, after received goods within 10 days, please don’t worry to contact us at any time. We will reply you in 24 hours and let you choose solutions to meet your satisfactory.

Q: Our advantage
A: Free cameraman special for you: Supply high quality photos for you after ordered. Save tax: We can make C/O, Form E, Form-F and so on. They can help you save 10~30$ custom tax. Reduce freight rate: We compress beds, integration space and talk with express. Just for saving freight rate for customer. Usually, by the way, it can save about 20%~35% shipping cost. And we are trying to improve all the time. We have a professional technical team: We can provide a full range of pre-sale consulting and after-sale technical guidance.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Skid-Resistance, Wear-Resistant
Application: Packaging Machinery
Surface Treatment: Polishing
Material: Rubber
Rated Power: 3000W
Samples:
US$ 238/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

What advancements in brake motor technology have improved energy efficiency?

Advancements in brake motor technology have led to significant improvements in energy efficiency, resulting in reduced power consumption and operational costs. These advancements encompass various aspects of brake motor design, construction, and control systems. Here’s a detailed explanation of the advancements in brake motor technology that have improved energy efficiency:

  • High-Efficiency Motor Designs: Brake motors now incorporate high-efficiency motor designs that minimize energy losses during operation. These designs often involve the use of advanced materials, improved winding techniques, and optimized magnetic circuits. High-efficiency motors reduce the amount of energy wasted as heat and maximize the conversion of electrical energy into mechanical power, leading to improved overall energy efficiency.
  • Efficient Brake Systems: Brake systems in modern brake motors are designed to minimize energy consumption during braking and holding periods. Energy-efficient brake systems utilize materials with low friction coefficients, reducing the energy dissipated as heat during braking. Additionally, advanced control mechanisms and algorithms optimize the engagement and disengagement of the brake, minimizing power consumption while maintaining reliable braking performance.
  • Regenerative Braking: Some advanced brake motors incorporate regenerative braking technology, which allows the recovery and reuse of energy that would otherwise be dissipated as heat during braking. Regenerative braking systems convert the kinetic energy of the moving equipment into electrical energy, which is fed back into the power supply or stored in energy storage devices. By harnessing and reusing this energy, brake motors improve energy efficiency and reduce the overall power consumption of the system.
  • Variable Speed Control: Brake motors equipped with variable frequency drives (VFDs) or other speed control mechanisms offer improved energy efficiency. By adjusting the motor’s speed and torque to match the specific requirements of the application, variable speed control reduces energy wastage associated with operating at fixed speeds. The ability to match the motor’s output to the load demand allows for precise control and significant energy savings.
  • Advanced Control Systems: Brake motors benefit from advanced control systems that optimize energy usage. These control systems employ sophisticated algorithms and feedback mechanisms to continuously monitor and adjust motor performance based on the load conditions. By dynamically adapting the motor operation to the changing requirements, these control systems minimize energy losses and improve overall energy efficiency.
  • Improved Thermal Management: Efficient thermal management techniques have been developed to enhance brake motor performance and energy efficiency. These techniques involve the use of improved cooling systems, such as advanced fan designs or liquid cooling methods, to maintain optimal operating temperatures. By effectively dissipating heat generated during motor operation, thermal management systems reduce energy losses associated with excessive heat and improve overall energy efficiency.

These advancements in brake motor technology, including high-efficiency motor designs, efficient brake systems, regenerative braking, variable speed control, advanced control systems, and improved thermal management, have collectively contributed to improved energy efficiency. By reducing energy losses, optimizing braking mechanisms, and implementing intelligent control strategies, modern brake motors offer significant energy savings and contribute to a more sustainable and cost-effective operation of equipment.

brake motor

How does a brake motor enhance safety in industrial and manufacturing settings?

In industrial and manufacturing settings, brake motors play a crucial role in enhancing safety by providing reliable braking and control mechanisms. These motors are specifically designed to address safety concerns and mitigate potential risks associated with rotating machinery and equipment. Here’s a detailed explanation of how brake motors enhance safety in industrial and manufacturing settings:

1. Controlled Stopping: Brake motors offer controlled stopping capabilities, allowing for precise and predictable deceleration of rotating machinery. This controlled stopping helps prevent abrupt stops or sudden changes in motion, reducing the risk of accidents, equipment damage, and injury to personnel. By providing smooth and controlled stopping, brake motors enhance safety during machine shutdowns, emergency stops, or power loss situations.

2. Emergency Stop Functionality: Brake motors often incorporate emergency stop functionality as a safety feature. In case of an emergency or hazardous situation, operators can activate the emergency stop function to immediately halt the motor and associated machinery. This rapid and reliable stopping capability helps prevent accidents, injuries, and damage to equipment, providing an essential safety measure in industrial environments.

3. Load Holding Capability: Brake motors have the ability to hold loads in position when the motor is not actively rotating. This load holding capability is particularly important for applications where the load needs to be securely held in place, such as vertical lifting mechanisms or inclined conveyors. By preventing unintended movement or drift of the load, brake motors ensure safe operation and minimize the risk of uncontrolled motion that could lead to accidents or damage.

4. Overload Protection: Brake motors often incorporate overload protection mechanisms to safeguard against excessive loads. These protection features can include thermal overload protection, current limiters, or torque limiters. By detecting and responding to overload conditions, brake motors help prevent motor overheating, component failure, and potential hazards caused by overburdened machinery. This protection enhances the safety of personnel and prevents damage to equipment.

5. Failsafe Braking: Brake motors are designed with failsafe braking systems that ensure reliable braking even in the event of power loss or motor failure. These systems can use spring-loaded brakes or electromagnetic brakes that engage automatically when power is cut off or when a fault is detected. Failsafe braking prevents uncontrolled motion and maintains the position of rotating machinery, reducing the risk of accidents, injury, or damage during power interruptions or motor failures.

6. Integration with Safety Systems: Brake motors can be integrated into safety systems and control architectures to enhance overall safety in industrial settings. They can be connected to safety relays, programmable logic controllers (PLCs), or safety-rated drives to enable advanced safety functionalities such as safe torque off (STO) or safe braking control. This integration ensures that the brake motor operates in compliance with safety standards and facilitates coordinated safety measures across the machinery or production line.

7. Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with industry-specific safety standards and regulations. These standards, such as ISO standards or Machinery Directive requirements, define the safety criteria and performance expectations for rotating machinery. By using brake motors that meet these safety standards, industrial and manufacturing settings can ensure a higher level of safety, regulatory compliance, and risk mitigation.

8. Operator Safety: Brake motors also contribute to operator safety by reducing the risk of unintended movement or hazardous conditions. The controlled stopping and load holding capabilities of brake motors minimize the likelihood of unexpected machine behavior that could endanger operators. Additionally, the incorporation of safety features like emergency stop buttons or remote control options provides operators with convenient means to stop or control the machinery from a safe distance, reducing their exposure to potential hazards.

By providing controlled stopping, emergency stop functionality, load holding capability, overload protection, failsafe braking, integration with safety systems, compliance with safety standards, and operator safety enhancements, brake motors significantly enhance safety in industrial and manufacturing settings. These motors play a critical role in preventing accidents, injuries, and equipment damage, contributing to a safer working environment and ensuring the well-being of personnel.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China manufacturer Cost Effective 3000W 48V Servo Motor Agv DC AC Motor with Brake for Industry Agv Robot   with Best Sales China manufacturer Cost Effective 3000W 48V Servo Motor Agv DC AC Motor with Brake for Industry Agv Robot   with Best Sales
editor by CX 2024-05-10

China OEM Universal CE Certified bldc hub electric with gearbox 220V brake dc motor vacuum pump brakes

Product Description

 

Product Description:

Gear Motor-Torque Table Allowance Torque Unit:Upside (N.m)/Belowside (kgf.cm)

•Gearhead and Intermediate gearhead are sold separately.
•Enter the reduction ratio into the blank() within the model name.
•The speed is calculated by dividing the motor’s synchronous speed by the reduction ratio. The actual speed is 2%~20% less than the displayed value, depending on the size of the load.
•To reduce the speed beyond the reduction ratio in the following table, attach an intermediate gearhead (reduction ratio: 10) between the reducer and motor. In that case, the permissible torque is 20N.m.

 

Type

Motor/Gearhead

Gear Ratio

3

3.6

5

6

7.5

9

12.5

15

18

25

30

36

50

60

75

90

100

120

150

180

Speed

r/min

866

722

520

433

346

288

208

173

144

104

86

72

52

43

34

28

26

21

17

14

Z5D120-24GU-M(5GU180KB)

5GU()RC/

5GU()RT

0.87

1.04

1.45

1.74

2.41

5.44

4.02

4.82

5.78

8.03

9.64

10.4

14.5

17.4

20.0

20.0

20.0

20.0

20.0

20.0

8.87

10.6

14.8

17.7

24.6

55.5

41.0

48.2

59.0

81.9

98.3

106

148

177

200

200

200

200

200

200

Dimensions(Unit:mm):

Company Information

FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you () /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Power Tools
Operating Speed: Constant Speed
Structure and Working Principle: Brushless
Certification: ISO9001, CCC, CCC, CE, RoHS, UL
Commutation: Brushless
Transport Package: Cnt
Customization:
Available

|

brake motor

Can brake motors be used in conjunction with other motion control methods?

Yes, brake motors can be used in conjunction with other motion control methods to achieve precise and efficient control over mechanical systems. Brake motors provide braking functionality, while other motion control methods offer various means of controlling the speed, position, and acceleration of the system. Combining brake motors with other motion control methods allows for enhanced overall system performance and versatility. Here’s a detailed explanation of how brake motors can be used in conjunction with other motion control methods:

  • Variable Frequency Drives (VFDs): Brake motors can be used in conjunction with VFDs, which are electronic devices that control the speed and torque of an electric motor. VFDs enable precise speed control, acceleration, and deceleration of the motor by adjusting the frequency and voltage supplied to the motor. By incorporating a brake motor with a VFD, the system benefits from both the braking capability of the motor and the advanced speed control provided by the VFD.
  • Servo Systems: Servo systems are motion control systems that utilize servo motors and feedback mechanisms to achieve highly accurate control over position, velocity, and torque. In certain applications where rapid and precise positioning is required, brake motors can be used in conjunction with servo systems. The brake motor provides the braking function when the system needs to hold position or decelerate rapidly, while the servo system controls the dynamic motion and positioning tasks.
  • Stepper Motor Control: Stepper motors are widely used in applications that require precise control over position and speed. Brake motors can be utilized alongside stepper motor control systems to provide braking functionality when the motor needs to hold position or prevent undesired movement. This combination allows for improved stability and control over the stepper motor system, especially in applications where holding torque and quick deceleration are important.
  • Hydraulic or Pneumatic Systems: In some industrial applications, hydraulic or pneumatic systems are used for motion control. Brake motors can be integrated into these systems to provide additional braking capability when needed. For example, a brake motor can be employed to hold a specific position or provide emergency braking in a hydraulic or pneumatic actuator system, enhancing safety and control.
  • Control Algorithms and Systems: Brake motors can also be utilized in conjunction with various control algorithms and systems to achieve specific motion control objectives. These control algorithms can include closed-loop feedback control, PID (Proportional-Integral-Derivative) control, or advanced motion control algorithms. By incorporating a brake motor into the system, the control algorithms can utilize the braking functionality to enhance overall system performance and stability.

The combination of brake motors with other motion control methods offers a wide range of possibilities for achieving precise, efficient, and safe control over mechanical systems. Whether it is in conjunction with VFDs, servo systems, stepper motor control, hydraulic or pneumatic systems, or specific control algorithms, brake motors can complement and enhance the functionality of other motion control methods. This integration allows for customized and optimized control solutions to meet the specific requirements of diverse applications.

brake motor

What factors should be considered when selecting the right brake motor for a task?

When selecting the right brake motor for a task, several factors should be carefully considered to ensure optimal performance and compatibility with the specific application requirements. These factors help determine the suitability of the brake motor for the intended task and play a crucial role in achieving efficient and reliable operation. Here’s a detailed explanation of the key factors that should be considered when selecting a brake motor:

1. Load Characteristics: The characteristics of the load being driven by the brake motor are essential considerations. Factors such as load size, weight, and inertia influence the torque, power, and braking requirements of the motor. It is crucial to accurately assess the load characteristics to select a brake motor with the appropriate power rating, torque capacity, and braking capability to handle the specific load requirements effectively.

2. Stopping Requirements: The desired stopping performance of the brake motor is another critical factor to consider. Different applications may have specific stopping time, speed, or precision requirements. The brake motor should be selected based on its ability to meet these stopping requirements, such as adjustable braking torque, controlled response time, and stability during stopping. Understanding the desired stopping behavior is crucial for selecting a brake motor that can provide the necessary control and accuracy.

3. Environmental Conditions: The operating environment in which the brake motor will be installed plays a significant role in its selection. Factors such as temperature, humidity, dust, vibration, and corrosive substances can affect the performance and lifespan of the motor. It is essential to choose a brake motor that is designed to withstand the specific environmental conditions of the application, ensuring reliable and durable operation over time.

4. Mounting and Space Constraints: The available space and mounting requirements should be considered when selecting a brake motor. The physical dimensions and mounting options of the motor should align with the space constraints and mounting configuration of the application. It is crucial to ensure that the brake motor can be properly installed and integrated into the existing machinery or system without compromising the performance or safety of the overall setup.

5. Power Supply: The availability and characteristics of the power supply should be taken into account. The voltage, frequency, and power quality of the electrical supply should match the specifications of the brake motor. It is important to consider factors such as single-phase or three-phase power supply, voltage fluctuations, and compatibility with other electrical components to ensure proper operation and avoid electrical issues or motor damage.

6. Brake Type and Design: Different brake types, such as electromagnetic brakes or spring-loaded brakes, offer specific advantages and considerations. The choice of brake type should align with the requirements of the application, taking into account factors such as braking torque, response time, and reliability. The design features of the brake, such as braking surface area, cooling methods, and wear indicators, should also be evaluated to ensure efficient and long-lasting braking performance.

7. Regulatory and Safety Standards: Compliance with applicable regulatory and safety standards is crucial when selecting a brake motor. Depending on the industry and application, specific standards and certifications may be required. It is essential to choose a brake motor that meets the necessary standards and safety requirements to ensure the protection of personnel, equipment, and compliance with legal obligations.

8. Cost and Lifecycle Considerations: Finally, the cost-effectiveness and lifecycle considerations should be evaluated. This includes factors such as initial investment, maintenance requirements, expected lifespan, and availability of spare parts. It is important to strike a balance between upfront costs and long-term reliability, selecting a brake motor that offers a favorable cost-to-performance ratio and aligns with the expected lifecycle and maintenance budget.

Considering these factors when selecting a brake motor helps ensure that the chosen motor is well-suited for the intended task, provides reliable and efficient operation, and meets the specific requirements of the application. Proper evaluation and assessment of these factors contribute to the overall success and performance of the brake motor in its designated task.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China OEM Universal CE Certified bldc hub electric with gearbox 220V brake dc motor   vacuum pump brakesChina OEM Universal CE Certified bldc hub electric with gearbox 220V brake dc motor   vacuum pump brakes
editor by CX 2024-05-10

China Best Sales Bch1303n32f1c Servo Motor with Brake Schneid for Factory vacuum pump and compressor

Product Description

BCH1303N32F1C Servo motor with brake Schneid for factory

Picture show

Recommended serices

ATV-320U55N4C
ATV320U22M2C
ATV320D11N4B
ATV320U40N4B
ATV320U04N4C
ATV320U22N4C
ATV320U02M2C
ATV320U22N4B
ATV320U07N4B
ATV320U11N4B
ATV320U06N4B
ATV320U04N4B
ATV320U04M2C
ATV320U11N4C
ATV320U15N4B
ATV320U15N4C
ATV320U55N4B
ATV320U75N4B
ATV320U30N4B
ATV320U40N4C

Company Profile

HangZhou Heneng trade company,the main products
are automation controlelectroniccomponentstouch screen and other electronic products.With nearly 10 years industry experience of electronic component and professional services, Heneng trade company has won the trust of
customers.Heneng’s believe is help our customer factories to become automation and to create the greatest benefit for clients.

Heneng is looking CHINAMFG to cooperate with you!

Our warehouse

Our Advantages

Our company is advantage of industrial automation products,
not only CHINAMFG , but also AB Weinview ABB CHINAMFG Omron CHINAMFG Schneid beckhoff and so on.
So if any demand please contact me freely.

Product:PLC, Encoder, Inverter, Servo motor , driver, sensor, touchscreen and others

Product package

 

Dlivery

FAQ

1. Q: How to guarantee the quality of your products ?
A: All goods are new and original with 365 days guarantee. .

2. Q: Could Heneng Trade provide Technology Support?
A: We’re in this field many year. If there’s any problem, please contact us,we’ll provide suggestion from our engineer and the Manufacturer to help you solve the problem.

3. Q: What warranty does Heneng Trade Provide ?
A: All parts we sell have 30 days return policy from the day of shipment, but if Damage we are unable to replace it.

4. Q: What shipment Service Heneng Trade Provide?
A. We Ship via DHL,Araemx, FEDEX, UPS, EMS express, depends on customer’s requirement.

5. Q: What is your shipment procedure after getting the payment?
A. We dispatch the goods within 1 day after getting the payment, Air shipping usually take 3-5working days to reach there ondestination place, we will provide the tracking number to you when we dispatch goods.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 6

brake motor

How do brake motors ensure smooth and controlled movement in equipment?

Brake motors play a crucial role in ensuring smooth and controlled movement in equipment by providing reliable braking functionality. They work in coordination with the motor and other control systems to achieve precise control over the motion of the equipment. Here’s a detailed explanation of how brake motors ensure smooth and controlled movement in equipment:

  • Braking Capability: Brake motors are specifically designed to provide effective braking capability. When the power to the motor is cut off or when a braking signal is applied, the brake system engages, generating frictional forces that slow down and bring the equipment to a controlled stop. The brake torque generated by the motor helps prevent coasting or unintended movement, ensuring smooth and controlled deceleration.
  • Quick Response Time: Brake motors are engineered to have a quick response time, meaning that the brake engages rapidly once the control signal is applied. This quick response time allows for prompt and precise control over the movement of the equipment. By minimizing the delay between the initiation of the braking action and the actual engagement of the brake, brake motors contribute to smooth and controlled movement.
  • Adjustable Brake Torque: Brake motors often offer the ability to adjust the brake torque to suit the specific requirements of the equipment and application. The brake torque can be tailored to the load characteristics and operating conditions to achieve optimal braking performance. By adjusting the brake torque, brake motors ensure that the equipment decelerates smoothly and consistently, avoiding abrupt stops or jerky movements.
  • Brake Release Mechanisms: In addition to providing braking action, brake motors incorporate mechanisms to release the brake when the equipment needs to resume motion. These release mechanisms can be controlled manually or automatically, depending on the application. The controlled release of the brake ensures that the equipment starts moving smoothly and gradually, allowing for controlled acceleration.
  • Integration with Control Systems: Brake motors are integrated into the overall control systems of the equipment to achieve coordinated and synchronized movement. They work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to precisely control the speed, acceleration, and deceleration of the equipment. By seamlessly integrating with the control systems, brake motors contribute to the smooth and controlled movement of the equipment.
  • Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with safety standards and regulations. They undergo rigorous testing and quality control measures to ensure reliable and consistent braking performance. By adhering to safety standards, brake motors help prevent sudden or uncontrolled movements that could pose a safety risk and ensure the equipment operates within acceptable limits.

By providing effective braking capability, quick response time, adjustable brake torque, release mechanisms, integration with control systems, and compliance with safety standards, brake motors ensure smooth and controlled movement in equipment. They enable precise control over the deceleration, stopping, and starting of the equipment, enhancing operational efficiency, safety, and overall performance.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China Best Sales Bch1303n32f1c Servo Motor with Brake Schneid for Factory   vacuum pump and compressor	China Best Sales Bch1303n32f1c Servo Motor with Brake Schneid for Factory   vacuum pump and compressor
editor by CX 2024-05-09

China high quality 40# 220V 100W AC Permanent Magnet Synchronous Servo Motor with Brake vacuum pump brakes

Product Description

1.Product tyep
40# 220V 100W  AC Permanent Magnet Synchronous Servo motor without brake;Encoder can be choosed according to your requirements; High-end motor application fields cover industrial robots, AGVs, intelligent factories, CNC, and 3C, among others.

2.OEM&ODM are all acceptable

3.Our advantages:

3.1Having an excellent R&D team,

    

3.2. RELIABILITY FIRST , QUALITY CONTROL MANAGEMENT FIRST.

3.3.SHORT LEAD TIME (Conventional products about one-week)

3.4 COST-EFFECTIVE (competitive price )

3.5 Certification:ISO9001, CE; and our products meet RoHS requirements.
 

3.6 With a one-year warranty (under normal use)

4.Product features
4.1. The entire series adopts a 5-pair pole scheme;

4.2. Compared to competitors in the same industry, the product size has a shorter advantage;

4.3. The rotor adopts embedded magnetic steel, without the risk of magnetic steel falling off;

4.4. Encoders can be matched with various types, and the company has its own encoder products for matching use

Compared to peers, it has supporting advantages.

4.5. The appearance of the motor is available in silver and black, with a focus on black.

5.Technical indicators

Rated output power 100 W
Number of poles 10 P
rated voltage 220 VAC
Rated speed 3000 r/min
Maximum speed 6500 r/min
Rated torque 0.32 N.m
Instantaneous maximum torque 1.22 N.m
Rated Current 1.22 A(rms)
Instantaneous maximum current 4.3 A(rms)
Line back EMF  16.7 V/krpm
Torque coefficient 0.276 N.m/A
Moment of inertia  0.0486 Kg.Sq.m.10-4
Line resistance 12.4 ohm
Line inductance 13.3 mH
Brake rated voltage 24V+2.4V VDC
Brake rated power 4.4 W
Brake static torque ≥0.32 N.m
Brake moment of inertia 0.571 Kg.Sq.m.10-4
Weight 0.48 Kg
Feedback element Optional  
Temperature sensor NC  

6.Functional features

Working hours Continuous
Heat resistance Class F
Body color Black
Cooling method Natural cooling
Vibration level V15
Connection method Direct connection
Installation method Flange installation
Excitation method Permanent magnet
Protection method Fully enclosed ,self-cooling IP65 (except shaft penetration)
Rotation method Counterclockwise rotation(CCW) as seen from the extension end of the motor shaft

7.Outside view

8.Dimensions

9.Model Explanation

10.Servo motor wiring definition 

11.Company Profile 

12.Development history

13.Motor overview

14.Certificate patent display 

15.FAQ
Payments

1) We can accept EXW, FOB etc
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
4) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.

Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.Hope we could establish a long-term effective cooperation.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 65/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Are there any emerging trends in brake motor technology, such as digital control?

Yes, there are emerging trends in brake motor technology that are shaping the future of this field. One such trend is the adoption of digital control systems, which offer several advantages over traditional control methods. These advancements in digital control are revolutionizing brake motor technology and unlocking new possibilities for improved performance, efficiency, and integration within industrial processes. Here’s a detailed explanation of the emerging trends in brake motor technology, including the shift towards digital control:

  • Digital Control Systems: Digital control systems are becoming increasingly prevalent in brake motor technology. These systems utilize advanced microprocessors, sensors, and software algorithms to provide precise control, monitoring, and diagnostics. Digital control enables enhanced motor performance, optimized energy efficiency, and improved operational flexibility. It allows for seamless integration with other digital systems, such as programmable logic controllers (PLCs) or industrial automation networks, facilitating intelligent and interconnected manufacturing processes.
  • Intelligent Motor Control: The integration of digital control systems with brake motors enables intelligent motor control capabilities. These systems use sensor feedback and real-time data analysis to dynamically adjust motor parameters, such as speed, torque, and braking force, based on the changing operating conditions. Intelligent motor control optimizes motor performance, minimizes energy consumption, and enhances overall system efficiency. It also enables predictive maintenance by continuously monitoring motor health and providing early warnings for potential faults or failures.
  • Network Connectivity and Industry 4.0: Brake motors are increasingly designed to be part of interconnected networks in line with the principles of Industry 4.0. With digital control systems, brake motors can be connected to industrial networks, enabling real-time data exchange, remote monitoring, and control. This connectivity facilitates centralized monitoring and management of multiple brake motors, improves system coordination, and enables predictive analytics for proactive decision-making. It also allows for seamless integration with other smart devices and systems, paving the way for advanced automation and optimization in manufacturing processes.
  • Condition Monitoring and Predictive Maintenance: Digital control systems in brake motors enable advanced condition monitoring and predictive maintenance capabilities. Sensors integrated into the motor can collect data on parameters such as temperature, vibration, and load conditions. This data is processed and analyzed in real-time, allowing for early detection of potential issues or performance deviations. By implementing predictive maintenance strategies, manufacturers can schedule maintenance activities more efficiently, reduce unplanned downtime, and optimize the lifespan and reliability of brake motors.
  • Energy Efficiency Optimization: Digital control systems provide enhanced opportunities for optimizing energy efficiency in brake motors. These systems can intelligently adjust motor parameters based on load demand, operating conditions, and energy consumption patterns. Advanced algorithms and control techniques optimize the motor’s energy usage, reducing power wastage and maximizing overall energy efficiency. Digital control also enables integration with energy management systems, allowing for better monitoring and control of energy consumption across the entire manufacturing process.
  • Data Analytics and Machine Learning: The integration of digital control systems with brake motors opens up possibilities for leveraging data analytics and machine learning techniques. By collecting and analyzing large volumes of motor performance data, manufacturers can gain valuable insights into process optimization, fault detection, and performance trends. Machine learning algorithms can be applied to identify patterns, predict motor behavior, and optimize control strategies. This data-driven approach enhances decision-making, improves productivity, and enables continuous improvement in manufacturing processes.

In summary, emerging trends in brake motor technology include the adoption of digital control systems, intelligent motor control, network connectivity, condition monitoring, predictive maintenance, energy efficiency optimization, and data analytics. These trends are driving innovation in brake motor technology, improving performance, efficiency, and integration within manufacturing processes. As digital control becomes more prevalent, brake motors are poised to play a vital role in the era of smart manufacturing and industrial automation.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here’s a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor’s characteristics, such as torque, speed, and power rating, are matched with the braking system’s capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China high quality 40# 220V 100W AC Permanent Magnet Synchronous Servo Motor with Brake   vacuum pump brakesChina high quality 40# 220V 100W AC Permanent Magnet Synchronous Servo Motor with Brake   vacuum pump brakes
editor by CX 2024-05-09

China manufacturer 180# 7500W 380V AC Permanent Magnet Synchronous Servo Motor with Brake vacuum pump oil near me

Product Description

1.Product tyep
180# 7500W 380V AC Permanent Magnet Synchronous Servo motor with brake;Encoder can be choosed according to your requirements; High-end motor application fields cover industrial robots, AGVs, intelligent factories, CNC, and 3C, among others.

2.OEM&ODM are all acceptable

3.Our advantages:

3.1Having an excellent R&D team,

    

3.2. RELIABILITY FIRST , QUALITY CONTROL MANAGEMENT FIRST.

3.3.SHORT LEAD TIME (Conventional products about one-week)

3.4 COST-EFFECTIVE (competitive price )

3.5 Certification:ISO9001, CE; and our products meet RoHS requirements.
 

3.6 With a one-year warranty (under normal use)

4.Product features
4.1. The entire series adopts a 5-pair pole scheme;

4.2. Compared to competitors in the same industry, the product size has a shorter advantage;

4.3. The rotor adopts embedded magnetic steel, without the risk of magnetic steel falling off;

4.4. Encoders can be matched with various types, and the company has its own encoder products for matching use

Compared to peers, it has supporting advantages.

4.5. The appearance of the motor is available in silver and black, with a focus on black.

5.Technical indicators

Rated output power 7500 W
Number of poles 10 P
rated voltage 380 VAC
Rated speed 1500 r/min
Maximum speed 3000 r/min
Rated torque 48 N.m
Instantaneous maximum torque 119 N.m
Rated Current 24.8 A(rms)
Instantaneous maximum current 64.8 A(rms)
Line back EMF 126.9 V/krpm
Torque coefficient 2.099 N.m/A
Moment of inertia   Kg.sq.m.10-4
Line resistance 0.155 ohm
Line inductance 4.2 mH
Brake rated voltage 24V+2.4V VDC
Brake rated power 25 W
Brake static torque ≥1.5 N.m
Brake moment of inertia 137.57 Kg.sq.m.10-4
Weight 35.5 Kg
Feedback element Optional  
Temperature sensor NC  

6.Functional features

Working hours Continuous
Heat resistance Class F
Body color Black
Cooling method Natural cooling
Vibration level V15
Connection method Direct connection
Installation method Flange installation
Excitation method Permanent magnet
Protection method Fully enclosed ,self-cooling IP65 (except shaft penetration)
Rotation method Counterclockwise rotation(CCW) as seen from the extension end of the motor shaft

7.Outside view(unit:mm)

8.Dimensions

9.Model Explanation

10.Servo motor wiring definition 

11.Company Profile 

12.Development history

13.Motor overview

14.Certificate patent display 

15.FAQ
Payments

1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
4) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.

Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.Hope we could establish a long-term effective cooperation.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 485/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

What safety precautions should be followed when working with brake motors?

Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here’s a detailed explanation of the safety precautions that should be followed when working with brake motors:

  • Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
  • Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
  • Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
  • Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
  • Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
  • Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
  • Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor’s maintenance schedule to identify and address any potential issues before they escalate.
  • Follow Manufacturer Guidelines: It is crucial to follow the manufacturer’s guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
  • Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.

By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor’s moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer’s recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor’s vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor’s speed and torque. Follow the manufacturer’s guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor’s lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China manufacturer 180# 7500W 380V AC Permanent Magnet Synchronous Servo Motor with Brake   vacuum pump oil near me		China manufacturer 180# 7500W 380V AC Permanent Magnet Synchronous Servo Motor with Brake   vacuum pump oil near me
editor by CX 2024-05-09