Tag Archives: three phase induction motor

China supplier Yej Electromagnetic Brake Premium High Efficiency Three Phase Induction AC Electric Asynchronous Motor Available with Hot selling

Product Description

YEJ series electromagnetic brake motors have the same appearance, mounting dimension, insulation grade, protection class, way of cooling, structure and installation type, work condition, rated voltage and rated frequency as Y series (IP54) motors. This product is used in various machines which require fast stop, accurate positioning and back/forth movements.

Way of Braking: non excitation brake
The rated voltage of the electromagnetic brake is DC99V for power≤3kw, or DC170V for power≥4kw.

 

ZheJiang CHINAMFG Electromechanical Technology Co., Ltd, (originally ZHangZhoug Yinda) can date back to the year of 1992. Located in Xihu (West Lake) Dis. Hi-Tech Zone of ZheJiang Province, China, the company takes an area of 16,000 sqm with near 200 employees. The factory is equipped with complete series of production lines and equipment. And the annual output value is around 30 million US dollars.

Hilair specializes in the design and development of AC motors, such as IE1, IE2, IE3, IE4 series, cast iron and aluminum housing, AC & DC braked motors, variable frequency motors, grinding machine motors, etc.

Products have been exported to all over the world with the best prices and high quality.

We always insist on the principle of “people oriented, scientific and technological innovation”. We look CHINAMFG to your long term cooperation.

Q1 Are you a manufacturer or a trading company?
      We are a manufacturer of AC asynchronous motors in China.
Q2 Where is your factory?
      Xihu (West Lake) Dis., ZheJiang province.
Q3 What is your terms of payment ?
      Payment=1000USD, 30% T/T in advance , balance before shippment.
Q4 What about delivery time?
       Normally, 30 days after the receipt of payment.
Q5 About shipment?
      By sea, By air and By express delivery.
Q6 About sample?
      Available. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Yej
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

How do brake motors ensure smooth and controlled movement in equipment?

Brake motors play a crucial role in ensuring smooth and controlled movement in equipment by providing reliable braking functionality. They work in coordination with the motor and other control systems to achieve precise control over the motion of the equipment. Here’s a detailed explanation of how brake motors ensure smooth and controlled movement in equipment:

  • Braking Capability: Brake motors are specifically designed to provide effective braking capability. When the power to the motor is cut off or when a braking signal is applied, the brake system engages, generating frictional forces that slow down and bring the equipment to a controlled stop. The brake torque generated by the motor helps prevent coasting or unintended movement, ensuring smooth and controlled deceleration.
  • Quick Response Time: Brake motors are engineered to have a quick response time, meaning that the brake engages rapidly once the control signal is applied. This quick response time allows for prompt and precise control over the movement of the equipment. By minimizing the delay between the initiation of the braking action and the actual engagement of the brake, brake motors contribute to smooth and controlled movement.
  • Adjustable Brake Torque: Brake motors often offer the ability to adjust the brake torque to suit the specific requirements of the equipment and application. The brake torque can be tailored to the load characteristics and operating conditions to achieve optimal braking performance. By adjusting the brake torque, brake motors ensure that the equipment decelerates smoothly and consistently, avoiding abrupt stops or jerky movements.
  • Brake Release Mechanisms: In addition to providing braking action, brake motors incorporate mechanisms to release the brake when the equipment needs to resume motion. These release mechanisms can be controlled manually or automatically, depending on the application. The controlled release of the brake ensures that the equipment starts moving smoothly and gradually, allowing for controlled acceleration.
  • Integration with Control Systems: Brake motors are integrated into the overall control systems of the equipment to achieve coordinated and synchronized movement. They work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to precisely control the speed, acceleration, and deceleration of the equipment. By seamlessly integrating with the control systems, brake motors contribute to the smooth and controlled movement of the equipment.
  • Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with safety standards and regulations. They undergo rigorous testing and quality control measures to ensure reliable and consistent braking performance. By adhering to safety standards, brake motors help prevent sudden or uncontrolled movements that could pose a safety risk and ensure the equipment operates within acceptable limits.

By providing effective braking capability, quick response time, adjustable brake torque, release mechanisms, integration with control systems, and compliance with safety standards, brake motors ensure smooth and controlled movement in equipment. They enable precise control over the deceleration, stopping, and starting of the equipment, enhancing operational efficiency, safety, and overall performance.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What are the key components of a typical brake motor system?

A typical brake motor system consists of several key components that work together to provide controlled stopping and holding capabilities. These components are carefully designed and integrated to ensure the efficient operation of the brake motor. Here’s a detailed explanation of the key components of a typical brake motor system:

1. Electric Motor: The electric motor is the primary component of the brake motor system. It converts electrical energy into mechanical energy to drive the rotation of the equipment. The motor provides the necessary power and torque to perform the desired work. It can be an AC (alternating current) motor or a DC (direct current) motor, depending on the specific application requirements.

2. Braking Mechanism: The braking mechanism is a crucial component of the brake motor system that enables controlled stopping of the rotating equipment. It consists of various types of brakes, such as electromagnetic brakes or spring-loaded brakes. The braking mechanism engages when the power to the motor is cut off or the motor is de-energized, creating friction or applying pressure to halt the rotation.

3. Brake Coil or Actuator: In brake motors with electromagnetic brakes, a brake coil or actuator is employed. The coil generates a magnetic field when an electrical current passes through it, attracting the brake disc or plate and creating braking force. The coil is energized when the motor is powered, and it de-energizes when the power is cut off, allowing the brake to engage and stop the rotation.

4. Brake Disc or Plate: The brake disc or plate is a key component of the braking mechanism. It is attached to the motor shaft and rotates with it. When the brake engages, the disc or plate is pressed against a stationary surface, creating friction and stopping the rotation of the motor shaft. The material composition and design of the brake disc or plate are optimized for efficient braking performance.

5. Control System: Brake motor systems often incorporate a control system that enables precise control over the braking process. The control system allows for adjustable braking torque, response time, and braking profiles. It may include control devices such as switches, relays, or electronic control units (ECUs). The control system ensures the desired level of control and facilitates the integration of the brake motor system with other machinery or automation systems.

6. Power Supply: A reliable power supply is essential for the operation of the brake motor system. The power supply provides electrical energy to the motor and the brake mechanism. It can be a mains power supply or a dedicated power source, depending on the specific requirements of the application and the motor’s power rating.

7. Mounting and Housing: Brake motors are typically housed in a sturdy enclosure that protects the components from environmental factors, such as dust, moisture, or vibration. The housing also provides mounting points for the motor and facilitates the connection of external devices or machinery. The design of the mounting and housing ensures the stability and safety of the brake motor system.

8. Optional Accessories: Depending on the application, a brake motor system may include optional accessories such as temperature sensors, shaft encoders, or position sensors. These accessories provide additional functionality and feedback, allowing for advanced control and monitoring of the brake motor system.

These are the key components of a typical brake motor system. The integration and interaction of these components ensure controlled stopping, load holding, and precise positioning capabilities, making brake motors suitable for a wide range of industrial applications.

China supplier Yej Electromagnetic Brake Premium High Efficiency Three Phase Induction AC Electric Asynchronous Motor Available   with Hot selling	China supplier Yej Electromagnetic Brake Premium High Efficiency Three Phase Induction AC Electric Asynchronous Motor Available   with Hot selling
editor by CX 2024-01-03

China Best Sales YEJ Series High Efficiency Three Phase Asynchronous Induction  Brake Motor vacuum pump design

Product Description

Product Description

YEJ series Electromagnetic Brake Three Phase Asynchronous Motor
Product Description 
YEJ series motor is full closed, self fan cooling,squirrel-cage three-phase asynchronous motor with a electromagnetic brake, Y series motor end cover between the fan and attach a dc electromagnetic brake disc, is derived series of Y series.It is Widely used on mechanical equipment and driving machines where rapidly and accurate braking is demanded.
Features: Spring set brake. Power off operation manual release. Resets automatically. One-half period rectification.

Frame number: 80 ~225 Power: 0.55 ~45KW

Braking method: loss of power Braking rectification method: half-wave rectifier

Applicable to: all kinds of machine tools, printing machinery, forging machine, transport machinery, packaging machinery, food machinery, construction machinery, woodworking machinery and other requirements to quickly stop, accurate positioning, reciprocating operation, to prevent the sliding of various machinery for spindle drive and auxiliary transmission.

Features: fast braking, simple structure, accurate positioning.

PERFORMANCE DATA:

MODEL power Full load time Locked rotor torque Rated torque Locked rotor current Rated cuffrent Breakdown torque Rated torque
Rated current Rotating speed Efficiency Power factor
Synchronous speed 3000r/min
YEJ801-2 0.75 1.8 2825 75.0 0.84 2.2 6.5 2.3
YEJ802-2 1.1 2.5 2825 77.0 0.86 2.2 7.0 2.3
YEJ90S-2 1.5 3.4 2840 78.0 0.85 2.2 7.0 2.3
YEJ90L-2 2.2 4.8 2840 80.5 0.86 2.2 7.0 2.3
YEJ100L-2 3 6.4 2880 82.0 0.87 2.2 7.0 2.3
YEJ112M-2 4 8.2 2890 85.5 0.87 2.2 7.0 2.3
YEJ132S1-2 5.5 11.1 2900 85.5 0.88 2.0 7.0 2.3
YEJ132S2-2 7.5 15.0 2900 86.2 0.88 2.0 7.0 2.3
YEJ160M1-2 11 21.8 2930 87.2 0.88 2.0 7.0 2.3
YEJ160M2-2 15 29.4 2930 88.2 0.88 2.0 7.0 2.2
YEJ160L-2 18.5 35.5 2930 89.0 0.89 2.0 7.0 2.2
YEJ180M-2 22 42.2 2940 89.0 0.89 2.0 7.0 2.2
YEJ200L1-2 30 56.9 2950 90.0 0.89 2.0 7.0 2.2
YEJ200L2-2 37 69.8 2950 90.5 0.89 2.0 7.0 2.2
YEJ225M-2 45 84.0 2970 91.5 0.89 2.0 7.0 2.2
Synchronous speed1500r/min
YEJ801-4 0.55 1.5 1390 73.0 0.76 2.4 6.0 2.3
YEJ802-4 0.75 2.0 1390 74.5 0.76 2.3 6.0 2.3
YEJ90S-4 1.1 2.7 1400 78.0 0.78 2.3 6.5 2.3
YEJ90L-4 1.5 3.7 1400 79.0 0.79 2.3 6.5 2.3
YEJ100L1-4 2.2 5.0 1420 81.0 0.82 2.2 7.0 2.3
YEJ100L2-4 3 6.8 1420 82.5 0.81 2.2 7.0 2.3
YEJ112M-4 4 8.8 1440 84.5 0.82 2.2 7.0 2.3
YEJ132S-4 5.5 11.6 1440 85.5 0.84 2.2 7.0 2.3
YEJ132M-4 7.5 15.4 1440 87.0 0.85 2.2 7.0 2.3
YEJ160M-4 11 22.6 1460 88.0 0.84 2.2 7.0 2.3
YEJ160L-4 15 30.0 1460 88.5 0.85 2.2 7.0 2.2
YEJ180M-4 18.5 35.9 1470 91.0 0.86 2.0 7.0 2.2
YEJ180L1-4 22 42.5 1470 91.5 0.86 2.0 7.0 2.2
YEJ200L-4 30 56.8 1470 92.2 0.87 2.0 7.0 2.2
YEJ225S-4 37 70.4 1480 91.8 0.87 1.9 7.0 2.2
YEJ225M-4 45 84.2 1480 92.3 0.88 1.9 7.0 2.2
Synchronous speed1000r/min  
YEJ90S-6 0.75 2.3 910 72.5 0.70 2.0 5.5 2.2
YEJ90L-6 1.1 3.2 910 73.5 0.72 2.0 5.5 2.2
YEJ100L-6 1.5 4.0 940 77.5 0.74 2.0 5.5 2.2
YEJ112M-6 2.2 5.6 960 80.5 0.74 2.0 6.0 2.2
YEJ132S-6 3 7.2 960 83.0 0.76 2.0 6.0 2.2
YEJ132M1-6 4 9.4 960 84.0 0.77 2.0 6.5 2.2
YEJ132M2-6 5.5 12.6 960 85.3 0.78 2.0 6.5 2.0
YEJ160M-6 7.5 17.0 970 86.0 .0.78 2.0 6.5 2.0
YEJ160L-6 11 24.6 970 87.0 0.78 2.0 6.5 2.0
YEJ180L-6 15 31.4 970 89.5 0.81 1.8 6.5 2.0
YEJ200L1-6 18.5 37.7 980 89.8 0.83 1.8 6.5 2.0
YEJ200L2-6 22 44.6 980 90.2 0.86 1.8 6.5 2.0
YEJ225M-6 30 59.3 980 90.2 0.85 1.7 6.5 2.0
Synchronous speed750r/min
YEJ132S-8 2.2 5.8 710 80.5 0.71 2.0 5.5 2.0
YEJ132M-8 3 7.7 710 82.0 0.72 2.0 5.5 2.0
YEJ160M1-8 4 9.9 720 84.0 0.73 2.0 6.0 2.0
YEJ160M2-8 5.5 13.3 720 85.0 0.74 2.0 6.0 2.0
YEJ160L-8 7.5 17.7 720 86.0 0.75 2.0 5.5 2.0
YEJ180L-8 11 24.8 730 87.5 0.77 1.7 6.0 2.0
YEJ200L-8 15 34.1 730 88.0 0.76 1.8 6.0 2.0
YEJ225S-8 18.5 41.3 735 89.5 0.76 1.7 6.0 2.0
YEJ225M-8 22 47.6 735 90.0 0.78 1.8 6.0 2.0

Brake Technical Parameters

Frame  Armature maximum stroke (air gap) No-load braking time Brake torque Excitation voltage Brake excitation rate
YEJ80 1.0 0.20 7.5 99 50
YEJ90 1.0 0.20 1.5 99 60
YEJ100 1.0 0.20 30 99 80
YEJ112 1.0 0.25 40 170 110
YEJ132 1.2 0.25 75 170 130
YEJ160 1.2 0.35 150 170 150
YEJ180 1.2 0.35 200 170 150
YEJ200 1.5 0.45 300 170 200
YEJ225 1.5 0.45 450 170 200

OVERALL INSTALLATION DIMENSION:

Installation Structure Type

Common installation structure type, and the applicable frame size is shown in the table below 
 

Frame    Installation dimensions                             Dimensions
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
63~112
132~160
180~280 10
315~355 10

Note: “√” indicates the type of structure that can be manufactured

Shape and installation dimensions

Frame number Poles                                     Installation dimensions       Dimensions
A B C D E F G H K M N P S T AB AC AD HD HF L
80 2.4 125 100 50 19 40 6 15.5 80 10 165 130 200 12 3.5 165 175 150 175 185 390
90S 2.4.6 140 100 56 24 50 8 20 90 10 165 130 200 12 3.5 180 195 160 195 195 420
90L 2.4.6.8 140 125 56 24 50 8 20 90 10 165 130 200 12 3.5 180 195 160 195 195 445
100L 2.4.6.8 160 140 63 28 60 8 24 100 12 215 180 250 15 4 205 215 180 245 245 480
112M 2.4.6.8 190 140 70 28 60 8 24 112 12 215 180 250 15 4 245 240 190 265 265 510
132S 2.4.6.8 216 140 89 38 80 10 33 132 12 265 230 300 15 4 280 275 210 315 315 585
132M 2.4.6.8 216 178 89 38 80 10 33 132 12 265 230 300 15 4 280 275 210 315 315 625
160M 2.4.6.8 254 210 108 42 110 12 37 160 15 300 250 350 19 5 330 335 265 385 385 720
160L 2.4.6.8 254 254 108 42 110 12 37 160 15 300 250 350 19 5 330 335 265 385 385 765
180M 2.4.6.8 279 241 121 48 110 14 42.5 180 15 300 250 350 19 5 355 380 285 400 490 825
180L 2.4.6.8 279 279 121 48 110 14 42.5 180 15

300

250 350 19 5 355 380 285 400 430 875
200L 2.4.6.8 318 305 133 55 110 16 49 200 19 350 300 400 19 5 395 420 315 475 480 900
225S 2.4.6.8 356 286 149 60 140 18 53 225 19 400 350 450 19 5 430 475 345 530 535 1000
225M 2 356 311 149 55 110 16 49 225 19 400 350 450 19 4 430 475 345 530 535 1000
4.6.8 60 140 18 53 1030

PRODUCTION PROCESSING:

PAINTING COLOR CODE:

ADVANTAGE:
Pre-sales service: 

•We are a sales team, with all technical support from engineer team.
•We value every inquiry sent to us, ensure quick competitive offer within 24 hours.
•We cooperate with customer to design and develop the new products. Provide all necessary document.

After-sales service:
•We respect your feed back after receive the motors.
•We provide 1years warranty after receipt of motors..
•We promise all spare parts available in lifetime use.
•We loge your complain within 24 hours.

Application: Industrial
Operating Speed: Variable Speed
Number of Stator: Single-Phase
Species: YEJ series brake motor
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

How do brake motors handle variations in brake torque and response time?

Brake motors are designed to handle variations in brake torque and response time to ensure reliable and efficient braking performance. These variations can arise due to different operating conditions, load characteristics, or specific application requirements. Here’s a detailed explanation of how brake motors handle variations in brake torque and response time:

  • Brake Design and Construction: The design and construction of brake systems in brake motors play a crucial role in handling variations in brake torque and response time. Brake systems typically consist of brake pads or shoes that press against a brake disc or drum to generate frictional forces and provide braking action. The materials used for the brake components, such as brake linings, can be selected or designed to offer a wide range of torque capacities and response characteristics. By choosing the appropriate materials and optimizing the brake system design, brake motors can accommodate variations in torque requirements and response times.
  • Brake Control Mechanisms: Brake motors employ different control mechanisms to manage brake torque and response time. These mechanisms can be mechanical, electrical, or a combination of both. Mechanical control mechanisms often utilize springs or levers to apply and release the brake, while electrical control mechanisms rely on electromagnets or solenoids to engage or disengage the brake. The control mechanisms can be adjusted or configured to modulate the brake torque and response time based on the specific needs of the application.
  • Brake Torque Adjustments: Brake motors may offer provisions for adjusting the brake torque to accommodate variations in load requirements. This can be achieved through the selection of different brake linings or by adjusting the spring tension or magnetic force within the brake system. By modifying the brake torque, brake motors can provide the necessary braking force to meet the demands of different operating conditions or load characteristics.
  • Response Time Optimization: Brake motors can be engineered to optimize the response time of the braking system. The response time refers to the time it takes for the brake to engage or disengage once the control signal is applied. Several factors can influence the response time, including the design of the control mechanism, the characteristics of the brake linings, and the braking system’s overall dynamics. By fine-tuning these factors, brake motors can achieve faster or slower response times as required by the application, ensuring effective and timely braking action.
  • Electronic Control Systems: In modern brake motors, electronic control systems are often employed to enhance the flexibility and precision of brake torque and response time adjustments. These systems utilize sensors, feedback mechanisms, and advanced control algorithms to monitor and regulate the brake performance. Electronic control allows for real-time adjustments and precise control of the brake torque and response time, making brake motors more adaptable to variations in operating conditions and load requirements.

By combining appropriate brake design and construction, control mechanisms, torque adjustments, response time optimization, and electronic control systems, brake motors can effectively handle variations in brake torque and response time. This enables them to provide reliable and efficient braking performance across a wide range of operating conditions, load characteristics, and application requirements.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What is a brake motor and how does it operate?

A brake motor is a type of electric motor that incorporates a mechanical braking system. It is designed to provide both motor power and braking functionality in a single unit. The brake motor is commonly used in applications where rapid and precise stopping or holding of loads is required. Here’s a detailed explanation of what a brake motor is and how it operates:

A brake motor consists of two main components: the electric motor itself and a braking mechanism. The electric motor converts electrical energy into mechanical energy to drive a load. The braking mechanism, usually located at the non-drive end of the motor, provides the necessary braking force to stop or hold the load when the motor is turned off or power is cut off.

The braking mechanism in a brake motor typically employs one of the following types of brakes:

  1. Electromagnetic Brake: An electromagnetic brake is the most common type used in brake motors. It consists of an electromagnetic coil and a brake shoe or armature. When the motor is powered, the electromagnetic coil is energized, creating a magnetic field that attracts the brake shoe or armature. This releases the brake and allows the motor to rotate and drive the load. When the power is cut off or the motor is turned off, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation.
  2. Mechanical Brake: Some brake motors use mechanical brakes, such as disc brakes or drum brakes. These brakes employ friction surfaces, such as brake pads or brake shoes, which are pressed against a rotating disc or drum attached to the motor shaft. When the motor is powered, the brake is disengaged, allowing the motor to rotate. When the power is cut off or the motor is turned off, a mechanical mechanism, such as a spring or a cam, engages the brake, creating friction and stopping the motor’s rotation.

The operation of a brake motor involves the following steps:

  1. Motor Operation: When power is supplied to the brake motor, the electric motor converts electrical energy into mechanical energy, which is used to drive the load. The brake is disengaged, allowing the motor shaft to rotate freely.
  2. Stopping or Holding: When the power is cut off or the motor is turned off, the braking mechanism is engaged. In the case of an electromagnetic brake, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation. In the case of a mechanical brake, a mechanical mechanism engages the brake pads or shoes against a rotating disc or drum, creating friction and stopping the motor’s rotation.
  3. Release and Restart: To restart the motor, power is supplied again, and the braking mechanism is disengaged. In the case of an electromagnetic brake, the electromagnetic coil is energized, releasing the brake shoe or armature. In the case of a mechanical brake, the mechanical mechanism disengages the brake pads or shoes from the rotating disc or drum.

Brake motors are commonly used in applications that require precise stopping or holding of loads, such as cranes, hoists, conveyors, machine tools, and elevators. The incorporation of a braking system within the motor eliminates the need for external braking devices or additional components, simplifying the design and installation process. Brake motors enhance safety, efficiency, and control in industrial applications by providing reliable and rapid braking capabilities.

China Best Sales YEJ Series High Efficiency Three Phase Asynchronous Induction  Brake Motor   vacuum pump design		China Best Sales YEJ Series High Efficiency Three Phase Asynchronous Induction  Brake Motor   vacuum pump design
editor by CX 2023-11-30

China 15W AC 110V 220V single phase or three phase induction gear motor motor brushes

Model Number: 3IK15GN-C
Type: Induction Motor
Frequency: 50/60HZ
Phase: Single-phase
Efficiency: IE 1
Voltage: Single-phase AC110V,220V Three-phase AC220/380V
Certification: CCC, ce
Packaging Details: 15W AC 110V 220V single phase or 3 phase induction gear motor Motor Packing:Carton packaging
Port: XIHU (WEST LAKE) DIS.HN

Performance description:
1.The rotating mode is continuous.
2.E class insulation adopted
3.Stable performance with low noise
4.Balaneed wire winding is used and theerefore very convenient for reversible rotating Note : It’s just the typical technical data for you reference, We can produce motor according to customer’s requirement.

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China 15W AC 110V 220V single phase or three phase induction gear motor     motor brushesChina 15W AC 110V 220V single phase or three phase induction gear motor     motor brushes
editor by czh

China factory YBE4 Ie4 Series Super High Efficiency Flameproof Explosion-Proof Squirrel-Cage Cast Three-Phase Asynchronous Induction Motor near me shop

Warranty: 3months-1year
Model Number: YBE4
Type: Asynchronous Motor
Frequency: 50&60Hz
Phase: Three-phase
Protect Feature: Explosion-proof
AC Voltage: 460 / 480 V
Efficiency: IE 4
Product Name: YBE4 Motor
Keywords: Explosion-proof motor
Rated Voltage: 220/380V, 230/400V, 240/415V, or Customized
Duty Type: S1
Altitude: 1000m
Ambient Temperature: -20℃~-40℃
Circumstance: Indoor Circumstance
Protection Grade: IP55, IP56
Cooling method: IC411
Frame Size: H80-355
Packaging Details: Carton/Wooden Case/Pallet
Port: ZheJiang

Product Paramenters Model No.YBE4Delivery Time:30daysPayment Term:T/T, L/C, D/P Products Description Company Profile FAQ 1.What’re your main products ?We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.2. How to select a suitable motor?If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.3.Do you have a customized service for your standard motors?Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.4. Do you have an individual design service for motors?Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 5. Can I have samples for testing first?Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.6.How do you make sure motor quality?We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.7.What’s your lead time?Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.Weclome contact with us if have any questions about this motor or other products! Title goes here.Semi-Automatic PET Bottle Blowing Machine Bottle Making Machine Bottle Moulding MachinePET Bottle Making Machine is suitable for producing PET plastic containers and bottles in all shapes. Title goes here.Semi-Automatic PET Bottle Blowing Machine Bottle Making Machine Bottle Moulding MachinePET Bottle Making Machine is suitable for producing PET plastic containers and bottles in all shapes. Title goes here.Semi-Automatic PET Bottle Blowing Machine Bottle Making Machine Bottle Moulding MachinePET Bottle Making Machine is suitable for producing PET plastic containers and bottles in all shapes.

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China factory YBE4 Ie4 Series Super High Efficiency Flameproof Explosion-Proof Squirrel-Cage Cast Three-Phase Asynchronous Induction Motor  near me shop China factory YBE4 Ie4 Series Super High Efficiency Flameproof Explosion-Proof Squirrel-Cage Cast Three-Phase Asynchronous Induction Motor  near me shop

China supplier SIEMENS MOTOR 3KW 2.2KW 3KW 7.5KW 15KW 18.5kW 22KW 37KW 45KW 55KW 75KW 90KW 6Poles high eiffciency 3 three phase induction motor wholesaler

Warranty: 1year
Model Number: 1LE0001-XXCX3-3AA4
Type: Asynchronous Motor
Frequency: 50/60 Hz
Phase: Three-phase
Protect Feature: Totally Enclosed
AC Voltage: 380/660 V; 440V
Efficiency: IE 2
Mounting: B3 (Foot mounted)
Certification: CCC, ce
Packaging Details: Packed in cartons for motors below 7.5 kW and wooden case for motors up 7.5 kW
Port: ZheJiang Port

Company InformationAbout my company—One of the largest authentic agents of Siemens,ABB,TECO productsHangZhou Soochee Automatic Transmission Technology Co., Ltd- We started business of ac motors since 2009. And we always provide reasonable price, high quality and best service for our clients, then part of them ask us to supply other industrial control products. So we extend our business including production and trading. Until now, we are the professional supplier of Siemens,Teco and ABB brand electric motors (low voltage motor, high voltage motor, 3 phase ac motor, frequency motor, explosion-proof motor, brake motor), CZPT geared motors , frequency converters and so on.Our company specializes in the distribution of the following products:First,SIEMENS electric equipment:1- Siemens 3 phase induction motor: standard motor, inverter duty motor, brake motor, flameproof motor, all these motors are made by Siemens factory in China.(1LE0,1TL0,1MT0,1MB0)2- Siemens Inverters:G120 modular drive; S120 modular driveSecond,ABB electric equipment:1- ABB 3 phase asynchronous motor: M2BAX2- ABB Inverter duty motor: QABP IC411/IC4163- ABB brake motor: MQAEJ4- ABB flameproof motor: M2JA5- ABB inverters: ACS510/ACS550/ACS350/ACS880Third,TECO geared motors1-BR series,helical geared motors2-BS series,worm helical geared motors3-BK series,bevel helical geared motors4-BF series,prarllel shaft helical geared motorsFourth,GUOMAO gearbox:1- GF series,Parallel-shaft helical gear motor2- GK series,Helical-Bevel gear motor3- GR series,Helical gear motor4- GS series,Helical-worm gear motor5- Cycloidal reducer6- Special mill reducer7- Universal gear motor8- Plastic and rubber special reducer9- Planetary gear boxFifth,Weinview inverters1- Fan and pump type inverter2- Universal inverter3- Machine type inverter

OverviewThe 1LE0 series of high effi ciency 3 phase asynchronous motors with cast iron housing is Totally Enclosed Fan Cooled (TEFC) with IP55 environmental protection, and applicable for general purpose use. These motors are designed and manufactured in accordance with ISO, IEC standards, GB standards. By switching to 1LE0 series motor, customer can save energy up to 10 %!The 1LE0 series motor is designed for constant or adjustable speed with continuous duty operation (S1) over a speed range.

Packaging & Shipping
Contact InformationSales:Lily Qian
QQ:2850150927
Skype:lily15961231571
TEL/Wechat: 15961231571
Email:M15961231571at163.com

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China supplier SIEMENS MOTOR 3KW 2.2KW 3KW 7.5KW 15KW 18.5kW 22KW 37KW 45KW 55KW 75KW 90KW 6Poles high eiffciency 3 three phase induction motor  wholesaler China supplier SIEMENS MOTOR 3KW 2.2KW 3KW 7.5KW 15KW 18.5kW 22KW 37KW 45KW 55KW 75KW 90KW 6Poles high eiffciency 3 three phase induction motor  wholesaler