China Good quality DC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 2pole-0.37kw vacuum pump oil near me

Product Description

   

  HMEJ (DC) Series Self-braking Electric Motor 
HMEJ (DC) Series Self-braking Electric Motor which is totally enclosed squirrel cage with additional DC brake of disk type. It has advantage of fast brake, simple structure, high reliability and good versatility. In additional, the brake has manual work releasing structure which is widely used in mechanical equipment and transmissions devices for various requirements of rapid stop and accurate positioning.
HMEJ (DC) Series Self-braking Electric Motor 
HMEJ (DC) Series Self-braking Electric Motor which is totally enclosed squirrel cage with additional DC brake of disk type. It has advantage of fast brake, simple structure, high reliability and good versatility. In additional, the brake has manual work releasing structure which is widely used in mechanical equipment and transmissions devices for various requirements of rapid stop and accurate positioning.

 

                Energizing Power Ist/In Tst/TN Tmax/Tn  
KW RPM A % CosΦ N.m S W       KG
380V/50HZ  2POLE 3000RPM
HMEJ(DC) 63M1 0.18 2720 0.53 65 0.8 4 0.2 18 5.5 2.2 2.2 12
HMEJ(DC) 63M1 0.25 2720 0.69 68 0.81 4 0.2 18 5.5 2.2 2.2 13
HMEJ(DC) 71M1 0.37 2740 0.99 70 0.81 4 0.2 18 6.1 2.2 2.2 14
HMEJ(DC) 71M2 0.55 2740 1.4 73 0.82 4 0.2 18 6.1 2.2 2.3 15
HMEJ(DC) 80M1 0.75 2845 1.83 75 0.83 7.5 0.2 30 6.1 2.2 2.3 17
HMEJ(DC) 80M2 1.1 2840 2.58 77 0.84 7.5 0.2 30 7 2.2 2.3 18
HMEJ(DC) 90S 1.5 2840 3.43 79 0.84 15 0.2 50 7 2.2 2.3 23
HMEJ(DC) 90L 2.2 2840 4.85 81 0.85 15 0.2 50 7 2.2 2.3 26
HMEJ(DC) 100L 3 2860 6.31 83 0.87 30 0.2 65 7.5 2.2 2.3 37
HMEJ(DC) 112M 4 2880 8.1 85 0.88 40 0.25 90 7.5 2.2 2.3 45
HMEJ(DC) 132S1 5.5 2900 11 86 0.88 75 0.25 90 7.5 2.2 2.3 69
HMEJ(DC) 132S2 7.5 2900 14.9 87 0.88 75 0.25 90 7.5 2.2 2.3 72
HMEJ(DC) 160M1 11 2930 21.3 88 0.89 150 0.35 150 7.5 2.2 2.3 120
HMEJ(DC) 160M2 15 2930 28.8 89 0.89 150 0.35 150 7.5 2.2 2.3 130
HMEJ(DC) 160L 18.5 2930 34.7 90 0.9 150 0.35 150 7.5 2.2 2.3 149
HMEJ(DC) 180M 22 2940 40.8 91 0.9 200 0.35 150 7.5 2 2.3 189
HMEJ(DC) 200L1 30 2950 55.3 91.6 0.9 300 0.45 200 7.5 2 2.3 243
HMEJ(DC) 200L2 37 2950 67.6 92.4 0.9 300 0.45 200 7.5 2 2.3 267
HMEJ(DC) 225M 45 2970 82 92.7 0.9 400 0.45 200 7.5 2 2.3 323
380V/50HZ  4POLE 1500RPM
HMEJ(DC) 63M1 0.12 1310 0.44 57 0.72 4 0.2 18 4.4 2.1 2.2 13
HMEJ(DC) 63M2 0.18 1310 0.62 60 0.73 4 0.2 18 4.4 2.1 2.2 14
HMEJ(DC) 71M1 0.25 1330 0.79 65 0.74 4 0.2 18 5.2 2.1 2.2 15
HMEJ(DC) 71M2 0.37 1330 1.12 67 0.75 4 0.2 18 5.2 2.1 2.2 16
HMEJ(DC) 80M1 0.55 1390 1.57 71 0.75 7.5 0.2 30 5.2 2.4 2.3 17
HMEJ(DC) 80M2 0.75 1390 2.03 73 0.76 7.5 0.2 30 6 2.3 2.3 18
HMEJ(DC) 90S 1.1 1380 2.89 75 0.77 15 0.2 50 6 2.3 2.3 22
HMEJ(DC) 90L 1.5 1390 3.07 78 0.79 15 0.2 50 6 2.3 2.3 27
HMEJ(DC) 100L 2.2 1390 5.16 80 0.81 30 0.2 65 7 2.3 2.3 34
HMEJ(DC) 100L2 3 1410 6.78 82 0.82 30 0.2 65 7 2.3 2.3 38
HMEJ(DC) 112M 4 1410 8.8 84 0.82 40 0.25 90 7 2.3 2.3 48
HMEJ(DC) 132S 5.5 1435 11.7 85 0.83 75 0.25 90 7 2.3 2.3 71
HMEJ(DC) 132M 7.5 1440 15.6 87 0.84 75 0.25 150 7 2.3 2.3 83
HMEJ(DC) 160M 11 1440 22.3 88 0.84 150 0.35 150 7 2.2 2.3 128
HMEJ(DC) 160L 15 1460 30.1 89 0.85 150 0.35 150 7 2.2 2.3 142
HMEJ(DC) 180M 18.5 1470 35.9 91 0.86 200 0.35 150 8 2.2 2.3 184
HMEJ(DC) 180L 22 1470 42.6 91.3 0.86 200 0.35 150 8 2.2 2.3 197
HMEJ(DC) 200L 30 1470 57.4 92.4 0.86 300 0.45 200 7 2.2 2.3 264
HMEJ(DC) 225S 37 1480 69.6 92.9 0.87 300 0.45 200 7 2.2 2.3 303
HMEJ(DC) 225M 45 1480 84.3 93.3 0.87 400 0.45 200 7 2.2 2.3 337
HMEJ(DC) 71M1 0.18 850 0.74 56 0.66 4 0.2 18 4 1.9 2 9.5
HMEJ(DC) 71M2 0.25 850 0.95 59 0.68 4 0.2 18 4 1.9 2 11
HMEJ(DC) 80M1 0.37 885 1.3 62 0.7 7.5 0.2 30 4.7 1.9 2 17
HMEJ(DC) 80M2 0.55 885 1.79 65 0.72 7.5 0.2 30 4.7 1.9 2.1 19
HMEJ(DC) 90S 0.75 910 2.29 69 0.72 15 0.2 50 5.5 2 2.1 22
HMEJ(DC) 90L 1.1 910 3.18 72 0.73 15 0.2 50 5.5 2 2.1 26
HMEJ(DC) 100L 1.5 920 3.94 76 0.75 30 0.2 65 6.5 2 2.1 34
HMEJ(DC) 112M 2.2 935 5.6 79 0.76 40 0.25 90 6.5 2 2.1 42
HMEJ(DC) 132S 3 960 7.4 81 0.76 75 0.25 90 6.5 2.1 2.1 68
HMEJ(DC) 132M1 4 960 9.8 82 0.76 75 0.25 90 6.5 2.1 2.1 79
HMEJ(DC) 132M2 5.5 960 12.9 84 0.77 75 0.25 90 6.5 2.1 2.1 87
HMEJ(DC) 160M 7.5 970 17 86 0.77 150 0.35 150 6.5 2 2.1 122
HMEJ(DC) 160L 11 970 24.2 87 0.78 150 0.35 150 6.5 2 2.1 141
HMEJ(DC) 180L 15 979 31.5 89.2 0.81 200 0.35 150 7 2 2.1 195
HMEJ(DC) 200L1 18.5 970 38.4 90.3 0.81 300 0.45 200 7 2.1 2.1 217
HMEJ(DC) 200L2 22 970 44.5 90.4 0.83 300 0.45 200 7 2.2 2.1 240
HMEJ(DC) 225M 30 980 59.1 91.8 0.84 400 0.45 200 7 2 2.1 323
380V/50HZ  8POLE 750RPM
HMEJ(DC) 80M1 0.18 645 0.88 51 0.61 7.5 0.2 30 3.3 1.8 1.9 17
HMEJ(DC) 80M2 0.25 645 1.15 54 0.61 7.5 0.2 50 3.3 1.8 1.9 19
HMEJ(DC) 90S 0.37 670 1.49 62 0.61 15 0.2 50 4 1.8 1.9 23
HMEJ(DC) 90L 0.55 670 2.18 63 0.61 15 0.2 50 4 1.8 2 25
HMEJ(DC) 100L1 0.75 680 2.17 71 0.67 30 0.2 65 4 1.8 2 33
HMEJ(DC) 100L2 1.1 680 2.39 73 0.69 30 0.2 65 5 1.8 2 38
HMEJ(DC) 112M 1.5 690 4.5 75 0.69 40 0.25 90 5 1.8 2 50
HMEJ(DC) 132S 2.2 705 6 78 0.71 75 0.25 90 6 1.8 2 63
HMEJ(DC) 132M 3 705 7.9 79 0.73 75 0.25 90 6 1.8 2 79
HMEJ(DC) 160M1 4 720 10.3 81 0.73 150 0.35 150 6 1.9 2 118
HMEJ(DC) 160M2 5.5 720 13.6 83 0.74 150 0.35 150 6 2 2 119
HMEJ(DC) 160L 7.5 720 17.8 85.5 0.75 150 0.35 150 6 2 2 145
HMEJ(DC) 180L 11 730 25.1 87.8 0.76 300 0.35 150 6.6 2 2 193
HMEJ(DC) 200L 15 730 34 88.3 0.76 300 0.45 200 6.6 2 2 250
HMEJ(DC) 225S 18.5 730 40.9 90.4 0.76 300 0.45 200 6.6 1.9 2 261
HMEJ(DC) 225M 22 740 47.1 91 0.78 150 0.45 200 6.6 1.9 2 283

Features and Benefits: 
Efficiency Class:EFF2
Frame Size: H63-225
Poles:2,4,6,8 poles
Rated Power: 0.18-45KW
Rated Voltage: 220/380V,380/660V,230/400V,400V/690V
Frequency: 50HZ,60HZ
Protection Class: IP44,IP54,IP55
Insulation Class: B,F,H
Mounting Type:B3,B5,B14,B35multi and pad mounting
Ambient Temperature: -20~+40 °C
Altitude: ≤1000M

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances
Operating Speed: Adjust Speed
Function: Control
Casing Protection: Protection Type
Number of Poles: 2.4.6.8
Type: Y2ej
Customization:
Available

|

brake motor

How do brake motors impact the overall productivity of manufacturing processes?

Brake motors have a significant impact on the overall productivity of manufacturing processes by enhancing operational efficiency, improving safety, and enabling precise control over motion. They play a crucial role in ensuring smooth and controlled movement, which is vital for the seamless operation of machinery and equipment. Here’s a detailed explanation of how brake motors impact the overall productivity of manufacturing processes:

  • Precise Control and Positioning: Brake motors enable precise control over the speed, acceleration, and deceleration of machinery and equipment. This precise control allows for accurate positioning, alignment, and synchronization of various components, resulting in improved product quality and reduced errors. The ability to precisely control the motion enhances the overall productivity of manufacturing processes by minimizing waste, rework, and downtime.
  • Quick Deceleration and Stopping: Brake motors provide fast and controlled deceleration and stopping capabilities. This is particularly important in manufacturing processes that require frequent changes in speed or direction. The ability to rapidly decelerate and stop equipment allows for efficient handling of workpieces, quick tool changes, and seamless transitions between manufacturing steps. It reduces cycle times and improves overall productivity by minimizing unnecessary delays and optimizing throughput.
  • Improved Safety: Brake motors enhance safety in manufacturing processes by providing reliable braking functionality. They help prevent coasting or unintended movement of equipment when power is cut off or during emergency situations. The braking capability of brake motors contributes to the safe operation of machinery, protects personnel, and prevents damage to equipment or workpieces. By ensuring a safe working environment, brake motors help maintain uninterrupted production and minimize the risk of accidents or injuries.
  • Enhanced Equipment Performance: The integration of brake motors into manufacturing equipment improves overall performance. Brake motors work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to optimize motor operation. This integration allows for efficient power utilization, reduced energy consumption, and improved responsiveness. By maximizing equipment performance, brake motors contribute to higher productivity, lower operational costs, and increased output.
  • Reduced Downtime and Maintenance: Brake motors are designed for durability and reliability, reducing the need for frequent maintenance and minimizing downtime. The robust construction and high-quality components of brake motors ensure long service life and consistent performance. This reliability translates into fewer unplanned shutdowns, reduced maintenance requirements, and improved overall equipment availability. By minimizing downtime and maintenance-related interruptions, brake motors contribute to increased productivity and manufacturing efficiency.
  • Flexibility and Adaptability: Brake motors offer flexibility and adaptability in manufacturing processes. They can be integrated into various types of machinery and equipment, spanning different industries and applications. Brake motors can be customized to meet specific requirements, such as adjusting brake torque or incorporating specific control algorithms. This adaptability allows manufacturers to optimize their processes, accommodate changing production needs, and increase overall productivity.

In summary, brake motors impact the overall productivity of manufacturing processes by providing precise control and positioning, enabling quick deceleration and stopping, improving safety, enhancing equipment performance, reducing downtime and maintenance, and offering flexibility and adaptability. Their role in ensuring smooth and controlled movement, combined with their reliable braking functionality, contributes to efficient and seamless manufacturing operations, ultimately leading to increased productivity, improved product quality, and cost savings.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor’s performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor’s reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer’s commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here’s a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor’s characteristics, such as torque, speed, and power rating, are matched with the braking system’s capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China Good quality DC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 2pole-0.37kw   vacuum pump oil near me		China Good quality DC Motor/Three Phase Electro-Magnetic Brake Induction Motor with 2pole-0.37kw   vacuum pump oil near me
editor by CX 2024-04-03