Tag Archives: variable speed motor

China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors vacuum pump oil near me

Product Description

52ZYT Variable Speed Permanent Magnet DC Brake Motor high power electric motor for Air Compressors

Quiet, stable and reliable for long life operation
1.Diameters: 52mm
2.Lengths:  90mm;105mm;120mm
3.Continuous torques: 0.05Nm;0.09Nm;0.14Nm
4.Power: 18W;32W;50W
5.Speeds up to 3400rpm;3400rpm;3400rpm
6.Environmental conditions: -10~+40°C
7.Number of poles:2
8.Mangnet material:Hard Ferrit
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft, and so on

Model 52ZYT01 52ZYT02 52ZYT03
Voltage V 24
No load speed rpm 4000
Rated torque Nm 50 90 140
Rated speed rpm 3400 3400 3400
Rated current A 1.10  1.92  2.90 
Stall torque Nm 330 610 930
Stall current A 6.3 11.5 17.2
Rotor inertia Kgmm² 25.0  40.0  55.0 
Back-EMF constant V/krpm 5.80  5.83 5.86
Torque Constant Nm/A 55.4 55.7 56.0 
Resistance(20ºC) ohm 3.80  2.10  1.40 
Weight Kg 0.70  0.95  1.20 
L1 mm 90 105 120
Rotor:La mm 20 35 50

Normal type of shaft

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Medical Equpiments
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Driving
Number of Poles: 2
Structure and Working Principle: Brush
Samples:
US$ 11/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

What advancements in brake motor technology have improved energy efficiency?

Advancements in brake motor technology have led to significant improvements in energy efficiency, resulting in reduced power consumption and operational costs. These advancements encompass various aspects of brake motor design, construction, and control systems. Here’s a detailed explanation of the advancements in brake motor technology that have improved energy efficiency:

  • High-Efficiency Motor Designs: Brake motors now incorporate high-efficiency motor designs that minimize energy losses during operation. These designs often involve the use of advanced materials, improved winding techniques, and optimized magnetic circuits. High-efficiency motors reduce the amount of energy wasted as heat and maximize the conversion of electrical energy into mechanical power, leading to improved overall energy efficiency.
  • Efficient Brake Systems: Brake systems in modern brake motors are designed to minimize energy consumption during braking and holding periods. Energy-efficient brake systems utilize materials with low friction coefficients, reducing the energy dissipated as heat during braking. Additionally, advanced control mechanisms and algorithms optimize the engagement and disengagement of the brake, minimizing power consumption while maintaining reliable braking performance.
  • Regenerative Braking: Some advanced brake motors incorporate regenerative braking technology, which allows the recovery and reuse of energy that would otherwise be dissipated as heat during braking. Regenerative braking systems convert the kinetic energy of the moving equipment into electrical energy, which is fed back into the power supply or stored in energy storage devices. By harnessing and reusing this energy, brake motors improve energy efficiency and reduce the overall power consumption of the system.
  • Variable Speed Control: Brake motors equipped with variable frequency drives (VFDs) or other speed control mechanisms offer improved energy efficiency. By adjusting the motor’s speed and torque to match the specific requirements of the application, variable speed control reduces energy wastage associated with operating at fixed speeds. The ability to match the motor’s output to the load demand allows for precise control and significant energy savings.
  • Advanced Control Systems: Brake motors benefit from advanced control systems that optimize energy usage. These control systems employ sophisticated algorithms and feedback mechanisms to continuously monitor and adjust motor performance based on the load conditions. By dynamically adapting the motor operation to the changing requirements, these control systems minimize energy losses and improve overall energy efficiency.
  • Improved Thermal Management: Efficient thermal management techniques have been developed to enhance brake motor performance and energy efficiency. These techniques involve the use of improved cooling systems, such as advanced fan designs or liquid cooling methods, to maintain optimal operating temperatures. By effectively dissipating heat generated during motor operation, thermal management systems reduce energy losses associated with excessive heat and improve overall energy efficiency.

These advancements in brake motor technology, including high-efficiency motor designs, efficient brake systems, regenerative braking, variable speed control, advanced control systems, and improved thermal management, have collectively contributed to improved energy efficiency. By reducing energy losses, optimizing braking mechanisms, and implementing intelligent control strategies, modern brake motors offer significant energy savings and contribute to a more sustainable and cost-effective operation of equipment.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What is a brake motor and how does it operate?

A brake motor is a type of electric motor that incorporates a mechanical braking system. It is designed to provide both motor power and braking functionality in a single unit. The brake motor is commonly used in applications where rapid and precise stopping or holding of loads is required. Here’s a detailed explanation of what a brake motor is and how it operates:

A brake motor consists of two main components: the electric motor itself and a braking mechanism. The electric motor converts electrical energy into mechanical energy to drive a load. The braking mechanism, usually located at the non-drive end of the motor, provides the necessary braking force to stop or hold the load when the motor is turned off or power is cut off.

The braking mechanism in a brake motor typically employs one of the following types of brakes:

  1. Electromagnetic Brake: An electromagnetic brake is the most common type used in brake motors. It consists of an electromagnetic coil and a brake shoe or armature. When the motor is powered, the electromagnetic coil is energized, creating a magnetic field that attracts the brake shoe or armature. This releases the brake and allows the motor to rotate and drive the load. When the power is cut off or the motor is turned off, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation.
  2. Mechanical Brake: Some brake motors use mechanical brakes, such as disc brakes or drum brakes. These brakes employ friction surfaces, such as brake pads or brake shoes, which are pressed against a rotating disc or drum attached to the motor shaft. When the motor is powered, the brake is disengaged, allowing the motor to rotate. When the power is cut off or the motor is turned off, a mechanical mechanism, such as a spring or a cam, engages the brake, creating friction and stopping the motor’s rotation.

The operation of a brake motor involves the following steps:

  1. Motor Operation: When power is supplied to the brake motor, the electric motor converts electrical energy into mechanical energy, which is used to drive the load. The brake is disengaged, allowing the motor shaft to rotate freely.
  2. Stopping or Holding: When the power is cut off or the motor is turned off, the braking mechanism is engaged. In the case of an electromagnetic brake, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation. In the case of a mechanical brake, a mechanical mechanism engages the brake pads or shoes against a rotating disc or drum, creating friction and stopping the motor’s rotation.
  3. Release and Restart: To restart the motor, power is supplied again, and the braking mechanism is disengaged. In the case of an electromagnetic brake, the electromagnetic coil is energized, releasing the brake shoe or armature. In the case of a mechanical brake, the mechanical mechanism disengages the brake pads or shoes from the rotating disc or drum.

Brake motors are commonly used in applications that require precise stopping or holding of loads, such as cranes, hoists, conveyors, machine tools, and elevators. The incorporation of a braking system within the motor eliminates the need for external braking devices or additional components, simplifying the design and installation process. Brake motors enhance safety, efficiency, and control in industrial applications by providing reliable and rapid braking capabilities.

China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors   vacuum pump oil near me		China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors   vacuum pump oil near me
editor by CX 2024-04-02

China factory 130mm Variable Speed Electric Brake Brushless DC Motor Synchronous Motor 15kw with Great quality

Product Description

Quiet, stable and reliable for long life operation
1.Diameters: 130mm
2.Lengths:  105mm;135mm;165mm
3.Continuous torques: 2.0Nm;4.0Nm;6.0Nm
4.Power: 314W;628W;942W
5.Speeds up to 1500rpm;1500rpm;1500rpm
6.Environmental conditions: -10~+40°C
7.Number of poles/phase:8/3
8.Mangnet material:Sintered NdFeB
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft, and so on

Model 130ZWX01 130ZWX02 130ZWX03
Voltage V 48
No load speed rpm 1760 1760 1760
Rated torque Nm 2.0  4.0  6.0 
Rated speed rpm 1500 1500 1500
Rated current A 9.0  17.0  25.0 
Torque(max) Nm 6.0  12.0  18.0 
At Torque(max)Current A 25 48 72
Rotor inertia Kgmm² 580 1000 1360
Back-EMF constant V/krpm 19 19 19
Torque Constant Nm/A 0.259 0.259 0.259
Resistance(20ºC) ohm 0.84 0.46 0.31
Weight Kg 5.2 7.6 10.0 
L1 mm 105 135 165
Rotor:La mm 30 55 95

Normal type of shaft

 

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Medical Equpiments
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Driving
Number of Poles: 8
Structure and Working Principle: Brushless
Samples:
US$ 74/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

How do brake motors impact the overall productivity of manufacturing processes?

Brake motors have a significant impact on the overall productivity of manufacturing processes by enhancing operational efficiency, improving safety, and enabling precise control over motion. They play a crucial role in ensuring smooth and controlled movement, which is vital for the seamless operation of machinery and equipment. Here’s a detailed explanation of how brake motors impact the overall productivity of manufacturing processes:

  • Precise Control and Positioning: Brake motors enable precise control over the speed, acceleration, and deceleration of machinery and equipment. This precise control allows for accurate positioning, alignment, and synchronization of various components, resulting in improved product quality and reduced errors. The ability to precisely control the motion enhances the overall productivity of manufacturing processes by minimizing waste, rework, and downtime.
  • Quick Deceleration and Stopping: Brake motors provide fast and controlled deceleration and stopping capabilities. This is particularly important in manufacturing processes that require frequent changes in speed or direction. The ability to rapidly decelerate and stop equipment allows for efficient handling of workpieces, quick tool changes, and seamless transitions between manufacturing steps. It reduces cycle times and improves overall productivity by minimizing unnecessary delays and optimizing throughput.
  • Improved Safety: Brake motors enhance safety in manufacturing processes by providing reliable braking functionality. They help prevent coasting or unintended movement of equipment when power is cut off or during emergency situations. The braking capability of brake motors contributes to the safe operation of machinery, protects personnel, and prevents damage to equipment or workpieces. By ensuring a safe working environment, brake motors help maintain uninterrupted production and minimize the risk of accidents or injuries.
  • Enhanced Equipment Performance: The integration of brake motors into manufacturing equipment improves overall performance. Brake motors work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to optimize motor operation. This integration allows for efficient power utilization, reduced energy consumption, and improved responsiveness. By maximizing equipment performance, brake motors contribute to higher productivity, lower operational costs, and increased output.
  • Reduced Downtime and Maintenance: Brake motors are designed for durability and reliability, reducing the need for frequent maintenance and minimizing downtime. The robust construction and high-quality components of brake motors ensure long service life and consistent performance. This reliability translates into fewer unplanned shutdowns, reduced maintenance requirements, and improved overall equipment availability. By minimizing downtime and maintenance-related interruptions, brake motors contribute to increased productivity and manufacturing efficiency.
  • Flexibility and Adaptability: Brake motors offer flexibility and adaptability in manufacturing processes. They can be integrated into various types of machinery and equipment, spanning different industries and applications. Brake motors can be customized to meet specific requirements, such as adjusting brake torque or incorporating specific control algorithms. This adaptability allows manufacturers to optimize their processes, accommodate changing production needs, and increase overall productivity.

In summary, brake motors impact the overall productivity of manufacturing processes by providing precise control and positioning, enabling quick deceleration and stopping, improving safety, enhancing equipment performance, reducing downtime and maintenance, and offering flexibility and adaptability. Their role in ensuring smooth and controlled movement, combined with their reliable braking functionality, contributes to efficient and seamless manufacturing operations, ultimately leading to increased productivity, improved product quality, and cost savings.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor’s performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor’s reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer’s commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China factory 130mm Variable Speed Electric Brake Brushless DC Motor Synchronous Motor 15kw   with Great quality China factory 130mm Variable Speed Electric Brake Brushless DC Motor Synchronous Motor 15kw   with Great quality
editor by CX 2023-11-29

in Tabuk Saudi Arabia sales price shop near me near me shop factory supplier Washing Machine Gearbox Marine Diesel Engine Toyota Hiace Forward Reverse Gear Reducer Motor Harvester Variable Speed Harmonic Drive Robot Bevel Gearbox manufacturer best Cost Custom Cheap wholesaler

  in Tabuk Saudi Arabia  sales   price   shop   near me   near me shop   factory   supplier Washing Machine Gearbox Marine Diesel Engine Toyota Hiace Forward Reverse Gear Reducer Motor Harvester Variable Speed Harmonic Drive Robot Bevel Gearbox manufacturer   best   Cost   Custom   Cheap   wholesaler

we are self-assured to give our consumers adaptable and diversified providers. In 2000, EPG took the guide in getting ISO14001 environment management certificate and thereafter passed the inspection of clean creation and recycling economic system, successful the title of “Zhejiang Inexperienced Company”. EPG will usually adhere to it enterprise spirit of being functional, innovative, efficient and outstanding to make the top intercontinental transmission travel.
Washing EPT EPT maritime diesel engine toyota hiace EPT reverse EPT EPT motor harvester variable velocity harmonic EPT robotic EPTl EPT

  in Tabuk Saudi Arabia  sales   price   shop   near me   near me shop   factory   supplier Washing Machine Gearbox Marine Diesel Engine Toyota Hiace Forward Reverse Gear Reducer Motor Harvester Variable Speed Harmonic Drive Robot Bevel Gearbox manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Tabuk Saudi Arabia  sales   price   shop   near me   near me shop   factory   supplier Washing Machine Gearbox Marine Diesel Engine Toyota Hiace Forward Reverse Gear Reducer Motor Harvester Variable Speed Harmonic Drive Robot Bevel Gearbox manufacturer   best   Cost   Custom   Cheap   wholesaler