Tag Archives: high speed motor

China Custom 1FL6034-2af21-1lb1 High Speed 400W Servo Motor with Brake for CHINAMFG vacuum pump oil

Product Description

 

Product Description

SIMOTICS S-1FL6 series 200W Low Inertia servomotor list

1FL6032-2AF21-1AA1

1FL6032-2AF21-1AB1

1FL6032-2AF21-1AG1

1FL6032-2AF21-1AH1

1FL6032-2AF21-1LA1

1FL6032-2AF21-1LB1

1FL6032-2AF21-1LG1

1FL6032-2AF21-1LH1

1FL6032-2AF21-1MA1

1FL6032-2AF21-1MB1

1FL6032-2AF21-1MG1

1FL6032-2AF21-1MH1

SIMOTICS S-1FL6 series 400W Low Inertia servomotor list

1FL6034-2AF21-1AA1

1FL6034-2AF21-1AB1

1FL6034-2AF21-1AG1

1FL6034-2AF21-1AH1

1FL6034-2AF21-1LA1

1FL6034-2AF21-1LB1

1FL6034-2AF21-1LG1

1FL6034-2AF21-1LH1

1FL6034-2AF21-1MA1

1FL6034-2AF21-1MB1

1FL6034-2AF21-1MG1

1FL6034-2AF21-1MH1

Company Profile

About FOCUS

* More than 10 years’ experience in the Industrial Automation field.

* Main products range: servo system, PLC, HMI, inverter, sensor, linear motion products, and etc.

* We supply various brands from Germany, Japan, Italy, ZheJiang (China), USA, and etc.

* We have established long-term business with many customers from all over the world.

Why Choose Us

Delivery & Payment

FAQ

Q: Are you reliable?
A: With over 10 years’ experince in industrial automation field, we supply our customers brand new and original goods with high quality. Many old customers trust us very much.

Q:What is the warranty for the goods?
A: All goods have 1 year warranty.

Q: How about the delivery lead time?
A: Normally in 3-5 working days.

Q: How about the shippment?
A: We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q: How about the Payment?
A: We accpet T/T, PayPal, Western Union, credit card, L/C, Alipay, Wechat pay, and etc.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: 3000rpm
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Explosion-Proof Type
Number of Poles: Other
Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here’s a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor’s shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor’s level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China Custom 1FL6034-2af21-1lb1 High Speed 400W Servo Motor with Brake for CHINAMFG   vacuum pump oil	China Custom 1FL6034-2af21-1lb1 High Speed 400W Servo Motor with Brake for CHINAMFG   vacuum pump oil
editor by CX 2024-04-11

China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors vacuum pump oil near me

Product Description

52ZYT Variable Speed Permanent Magnet DC Brake Motor high power electric motor for Air Compressors

Quiet, stable and reliable for long life operation
1.Diameters: 52mm
2.Lengths:  90mm;105mm;120mm
3.Continuous torques: 0.05Nm;0.09Nm;0.14Nm
4.Power: 18W;32W;50W
5.Speeds up to 3400rpm;3400rpm;3400rpm
6.Environmental conditions: -10~+40°C
7.Number of poles:2
8.Mangnet material:Hard Ferrit
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft, and so on

Model 52ZYT01 52ZYT02 52ZYT03
Voltage V 24
No load speed rpm 4000
Rated torque Nm 50 90 140
Rated speed rpm 3400 3400 3400
Rated current A 1.10  1.92  2.90 
Stall torque Nm 330 610 930
Stall current A 6.3 11.5 17.2
Rotor inertia Kgmm² 25.0  40.0  55.0 
Back-EMF constant V/krpm 5.80  5.83 5.86
Torque Constant Nm/A 55.4 55.7 56.0 
Resistance(20ºC) ohm 3.80  2.10  1.40 
Weight Kg 0.70  0.95  1.20 
L1 mm 90 105 120
Rotor:La mm 20 35 50

Normal type of shaft

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Medical Equpiments
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Driving
Number of Poles: 2
Structure and Working Principle: Brush
Samples:
US$ 11/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

What advancements in brake motor technology have improved energy efficiency?

Advancements in brake motor technology have led to significant improvements in energy efficiency, resulting in reduced power consumption and operational costs. These advancements encompass various aspects of brake motor design, construction, and control systems. Here’s a detailed explanation of the advancements in brake motor technology that have improved energy efficiency:

  • High-Efficiency Motor Designs: Brake motors now incorporate high-efficiency motor designs that minimize energy losses during operation. These designs often involve the use of advanced materials, improved winding techniques, and optimized magnetic circuits. High-efficiency motors reduce the amount of energy wasted as heat and maximize the conversion of electrical energy into mechanical power, leading to improved overall energy efficiency.
  • Efficient Brake Systems: Brake systems in modern brake motors are designed to minimize energy consumption during braking and holding periods. Energy-efficient brake systems utilize materials with low friction coefficients, reducing the energy dissipated as heat during braking. Additionally, advanced control mechanisms and algorithms optimize the engagement and disengagement of the brake, minimizing power consumption while maintaining reliable braking performance.
  • Regenerative Braking: Some advanced brake motors incorporate regenerative braking technology, which allows the recovery and reuse of energy that would otherwise be dissipated as heat during braking. Regenerative braking systems convert the kinetic energy of the moving equipment into electrical energy, which is fed back into the power supply or stored in energy storage devices. By harnessing and reusing this energy, brake motors improve energy efficiency and reduce the overall power consumption of the system.
  • Variable Speed Control: Brake motors equipped with variable frequency drives (VFDs) or other speed control mechanisms offer improved energy efficiency. By adjusting the motor’s speed and torque to match the specific requirements of the application, variable speed control reduces energy wastage associated with operating at fixed speeds. The ability to match the motor’s output to the load demand allows for precise control and significant energy savings.
  • Advanced Control Systems: Brake motors benefit from advanced control systems that optimize energy usage. These control systems employ sophisticated algorithms and feedback mechanisms to continuously monitor and adjust motor performance based on the load conditions. By dynamically adapting the motor operation to the changing requirements, these control systems minimize energy losses and improve overall energy efficiency.
  • Improved Thermal Management: Efficient thermal management techniques have been developed to enhance brake motor performance and energy efficiency. These techniques involve the use of improved cooling systems, such as advanced fan designs or liquid cooling methods, to maintain optimal operating temperatures. By effectively dissipating heat generated during motor operation, thermal management systems reduce energy losses associated with excessive heat and improve overall energy efficiency.

These advancements in brake motor technology, including high-efficiency motor designs, efficient brake systems, regenerative braking, variable speed control, advanced control systems, and improved thermal management, have collectively contributed to improved energy efficiency. By reducing energy losses, optimizing braking mechanisms, and implementing intelligent control strategies, modern brake motors offer significant energy savings and contribute to a more sustainable and cost-effective operation of equipment.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What is a brake motor and how does it operate?

A brake motor is a type of electric motor that incorporates a mechanical braking system. It is designed to provide both motor power and braking functionality in a single unit. The brake motor is commonly used in applications where rapid and precise stopping or holding of loads is required. Here’s a detailed explanation of what a brake motor is and how it operates:

A brake motor consists of two main components: the electric motor itself and a braking mechanism. The electric motor converts electrical energy into mechanical energy to drive a load. The braking mechanism, usually located at the non-drive end of the motor, provides the necessary braking force to stop or hold the load when the motor is turned off or power is cut off.

The braking mechanism in a brake motor typically employs one of the following types of brakes:

  1. Electromagnetic Brake: An electromagnetic brake is the most common type used in brake motors. It consists of an electromagnetic coil and a brake shoe or armature. When the motor is powered, the electromagnetic coil is energized, creating a magnetic field that attracts the brake shoe or armature. This releases the brake and allows the motor to rotate and drive the load. When the power is cut off or the motor is turned off, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation.
  2. Mechanical Brake: Some brake motors use mechanical brakes, such as disc brakes or drum brakes. These brakes employ friction surfaces, such as brake pads or brake shoes, which are pressed against a rotating disc or drum attached to the motor shaft. When the motor is powered, the brake is disengaged, allowing the motor to rotate. When the power is cut off or the motor is turned off, a mechanical mechanism, such as a spring or a cam, engages the brake, creating friction and stopping the motor’s rotation.

The operation of a brake motor involves the following steps:

  1. Motor Operation: When power is supplied to the brake motor, the electric motor converts electrical energy into mechanical energy, which is used to drive the load. The brake is disengaged, allowing the motor shaft to rotate freely.
  2. Stopping or Holding: When the power is cut off or the motor is turned off, the braking mechanism is engaged. In the case of an electromagnetic brake, the electromagnetic coil is de-energized, and the brake shoe or armature is pressed against a stationary surface, creating friction and stopping the motor’s rotation. In the case of a mechanical brake, a mechanical mechanism engages the brake pads or shoes against a rotating disc or drum, creating friction and stopping the motor’s rotation.
  3. Release and Restart: To restart the motor, power is supplied again, and the braking mechanism is disengaged. In the case of an electromagnetic brake, the electromagnetic coil is energized, releasing the brake shoe or armature. In the case of a mechanical brake, the mechanical mechanism disengages the brake pads or shoes from the rotating disc or drum.

Brake motors are commonly used in applications that require precise stopping or holding of loads, such as cranes, hoists, conveyors, machine tools, and elevators. The incorporation of a braking system within the motor eliminates the need for external braking devices or additional components, simplifying the design and installation process. Brake motors enhance safety, efficiency, and control in industrial applications by providing reliable and rapid braking capabilities.

China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors   vacuum pump oil near me		China high quality 52zyt Variable Speed Permanent Magnet DC Brake Motor High Power Electric Motor for Air Compressors   vacuum pump oil near me
editor by CX 2024-04-02

China OEM CHINAMFG MCR05 Hydraulic Wheel Motor Low Speed High Torque with Brake, Dual Speed Control vacuum pump adapter

Product Description

Product Description 

1. Product Features:

MCR05 Hydraulic Wheel Motor:

1) Incurve radial piston type.
2) Designed in control modules, combine freely.
3) High efficiency, High pressure, low noise.
4) Radial piston, Low speed, High torque.

 

2. Applications:

Mining Machinery: Coal Winning Machine, Road Header, Heavy Duty Handling Car, Coal Mine Drill.

Engineering Machinery: Skid Steer Loader, Break Machine.

Technical specification 
 

Type

MCR05-380

MCR05-470

MCR05-520

MCR05-565

MCR05-680

MCR05-750

Displacement(ml/r)

380

470

520

565

680

750

Continuous output power(kw)

29

29

29

29

35

35

Differential pressure 10Mpa torque(Nm)

604

748

827

899

1082

1194

Rated torque(Nm)

1419

1756

1942

2111

2540

2802

Pressure rating(Mpa)

25

25

25

25

25

25

Max. pressure(Mpa)

40

40

40

40

40

40

Max. speed(rpm)

220

220

220

220

220

170

Certification: ISO9001
Excitation Mode: Excited
Power Rating: Other
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brake motor

What safety precautions should be followed when working with brake motors?

Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here’s a detailed explanation of the safety precautions that should be followed when working with brake motors:

  • Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
  • Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
  • Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
  • Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
  • Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
  • Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
  • Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor’s maintenance schedule to identify and address any potential issues before they escalate.
  • Follow Manufacturer Guidelines: It is crucial to follow the manufacturer’s guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
  • Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.

By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor’s performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor’s reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer’s commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China OEM CHINAMFG MCR05 Hydraulic Wheel Motor Low Speed High Torque with Brake, Dual Speed Control   vacuum pump adapter	China OEM CHINAMFG MCR05 Hydraulic Wheel Motor Low Speed High Torque with Brake, Dual Speed Control   vacuum pump adapter
editor by CX 2023-11-18

China Micro dc motor 6v12v24v Speed Reduction High Torque Turbo vibrator electric motors for Range Hood Nesting Machine car motor

Guarantee: 3months-1year
Design Quantity: TWG3246-TEC2430
Usage: BOAT, Automobile, Electric powered Bicycle, House Equipment
Type: Gear MOTOR
Torque: 8kg.cm
Development: Long term Magnet
Commutation: Brushless
Protect Attribute: Absolutely Enclosed
Speed(RPM): 3-35
Ongoing Existing(A): one hundred seventy-320mA
Effectiveness: seventy five%, 35%
Stall Torque: 20Kg.cm
Stall Existing: 1.5 A
dimensions: 32*46mm
gears: Steel Spur Gears
Software: House Applicance
Shaft sort: D Shaft
ratio: 1/70-1/2700
sounds: Lower Sound Degree
Certification: RoHS
Packaging Specifics: 200PCS/CARTON
Port: HangZhou

Product Application.Automated doorway operators, automatic power preserving tub, electrical managed valve, robots, grass cutter, electric powered curtain, camera, medical provider, oxygen machine, and so forth.

Others software
Business DevicesVending EquipmentPrintersATMCopiers and Scanners
Camera and OpticalVideoCamerasProjectors
Lawn and YardLawn MowersSnow BlowersTrimmersLeaf Blowers
Certifications.ISO9001, SGS, Aluminum Metal Double SplitTwo pieceClamping Shaft Collar With Screw Countrywide higher-tech enterprises, and many others. Our CompanyTT Motor (HK) Industrial Co., Ltd. has been specializing in micro motors, gear motors and their respective components since 2000.Our items are commonly employed in enjoyment techniques, vehicles, residence and industrial appliances and tools and many others. Our goods are trustworthy and prolonged-lasting, and backed by a long time of knowledge. We export ninety eight% of our output globally. By leveraging our hard-won status for honesty, dependability and good quality, TT aims to proceed as a pioneer in the salesoverseas by looking for global associates. If your firm is an finish-consumer of micro-motors, a distributor or an agent, make sure you make contact with us.We search forward to getting CZPT to work together with you in the near foreseeable future. Our BuyersNIKE, FLEXTRONICS, STANLEY, and so on. Packing & DeliveryStandard packing Transport time:DHL: 3-5 operating days large torque long life time micro diameter 8mm 10mm 12mm 13mm 16mm 20mm carbon brush dc 1.5v-24v spur geared motor UPS: 5-7 working times TNT: 5-7 doing work times FedEx: 7-9 working days EMS: twelve-15 doing work times ChinaPost: Relies upon on ship to which region Sea: Relies upon on ship to which nation Our Client FeedbackExcellent quality, much better cost, very good provider, and on time shipping and delivery. FAQQ: How to purchase?A: deliver us inquiry → obtain our quotation → negotiate particulars → verify the sample → sign deal/deposit → mass creation →cargo prepared → Electrical Forklift Oil Pump Motor Brushed DC Motor 12VDC 24VDC 36VDC 48VDC equilibrium/delivery → more cooperationQ: How about Sample order?A: Sample is available for you. you should get in touch with us for information. As soon as we charge you sample payment, make sure you truly feel effortless, it would be refundwhen you area formal order.Q: Which transport way is obtainable?A: DHL, UPS, FedEx, TNT, EMS, China Put up,Sea are offered.The other transport techniques are also offered, make sure you get in touch with us if youneed ship by the other transport way. Q: How lengthy is the deliver[Making] and transport?A: Supply time relies upon on the amount you order. typically it normally takes 15-twenty five doing work days.Q: My package has lacking items. What can I do?A: You should make contact with our assistance staff and we will validate your purchase with the package contents.We apologize for any inconveniences. Q: How to confirm the payment?A: We accept payment by T/T, PayPal, the other payment methods also could be approved,You should make contact with us just before you shell out by the other payment ways. Also 30-fifty% deposit is accessible, the balance cash need to be paid ahead of transport.

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China Micro dc motor 6v12v24v Speed Reduction High Torque Turbo vibrator electric motors for Range Hood Nesting Machine     car motor		China Micro dc motor 6v12v24v Speed Reduction High Torque Turbo vibrator electric motors for Range Hood Nesting Machine     car motor
editor by czh 2023-02-20

China Fan motor 775795895 high speed and high torque double ball bearing 12V mini DC motor car motor

Model Quantity: 775/795/895
Usage: Fan
Kind: Micro Motor
Far more information: make sure you speak to us
Packaging Specifics: carton
Port: ShenZhen

Supporter motor 775/795/895 large speed and high torque double ball bearing 12V mini DC motor

Item title: 775 motor ball bearing motor
Speed: 12000 / min
Rated voltage: 12V
Rated power: 100W
Rated current: 1.2a
The diameter of axle: 5 mm
Excess weight: 343 g
Scope of application: automobile washing pump, spray machine, electric supporter, shredder, etc
Note: switching electricity supply or battery dc electricity source is advisable for starting existing previously mentioned 10A

Product title: 795 motor ball bearing motor
Velocity: ten thousand / min
Rated voltage: 12V
Rated energy: 100W
Rated existing: 1.2a
The diameter of axle: 5 mm
Excess weight: 375 g
Scope of application: car washing pump, spray device, electric enthusiast, shredder, etc
Be aware: switching electrical power offer or battery dc energy offer is suggested for beginning existing previously mentioned 10A

Product identify: 895 motor ball bearing motor
Speed: 6000 / min
Rated voltage: 12V
Rated electrical power: 80W
Rated existing: .8a
The diameter of axle: 5 mm
Fat: 501 g
Scope of application: auto washing pump, spray equipment, electric enthusiast, 1.5V 3V 3.7V Small Mini Electrical Core much less DC motor for Encounter massager Eye care toy vibration dc motor shredder, and so forth
Observe: switching electricity supply or battery dc energy provide is suggested for starting current above 10A

Company InformationWe focus in the manufacturing of different electronic parts. Our mission is to supply buyers with the best support, fully commited to developing prolonged-phrase cooperation with buyers, hunting forward to doing work with you.

Our Services1. Pay attention cautiously to consumer requests and offer various varieties of digital products to meet up with consumer requirements.2. Respond to customer requests inside ten minutes of doing work hrs to offer the greatest cost to clients.3. Patience and consumer conversation, and attempt to meet customer requirements.4. Swiftly create a payment get so consumers really do not have to wait. Settle for hassle-free payment methods: consumers can make payment by alibaba trade assurance, Paypal, Credit history Card, Lender Wire Transfer, Western Union, etc.5. Produce high quality merchandise, test, twin push 400w e wheelchair motors and joystick controller Do-it-yourself package 24V 200w electrical wheelchair motor bundle and make 100% experienced merchandise.6. Select the courier business asked for by the client to deliver quickly7. The client receives the solution and the purchase is concluded.

FAQ

Question

Response
Q1:Why decide on Alisi? 1.We are Alibaba Assessed Gold Provider.2. We have greatest quality control, Very best Service and aggressive Price tag.3.100% QC inspection Just before Cargo.
Q2:Can I get samples? Indeed, definitely. We will give the current samples for totally free, Sample price is refundable when you make an buy from us.
Q3.What about the lead time? When you complete the payment, we will ship it to you in 1-3 times. In accordance to the courier business you select, you can receive our goods in entrance of your residence in the quickest 3-5 days.
This autumn:What are the certifications do you have? As showed in the area of company info, we have CE, FCC, ROSH certifications. As you can see, our firm has a powerful competitives and excellent qualified in our organization location. We purpose to give the very best high quality and solutions to all worldwide clients.
Q5:What is the payment method we can assistance? You can pay out by TT transfer, Western Union and credit card through Paypal, brushless engine higher torque brushless dc motor forty eight voltios de motor which delivers complete consumer safety

Certifications
Packaging & ShippingPackingWe have a skilled packaging crew. We will use foam wrap to prevent the product from becoming squeezed and use a solid carton for the outer packaging, which can efficiently safeguard the basic safety of the solution. The outer layer will be entirely sealed with tape and can be properly water-proof. We will guarantee you that the product will not be damaged during transportation.

DeliveryWe have cooperated with many international categorical shipping and delivery businesses, such as DHL, FedEx UPS, TNT, EMS, China/HK Put up, CDEK, ARAMEX, 57CME13 4.0A Servo stepper motor 57EH56A4001 shut-loop motor engraving 1.3N.m encoder 2 period CL57 generate stage motor nema 23 SF, and so forth. According to your wants, we can select the cheapest and swiftest supply for you.

Speak to Us

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Motor

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China Fan motor 775795895 high speed and high torque double ball bearing 12V mini DC motor     car motor		China Fan motor 775795895 high speed and high torque double ball bearing 12V mini DC motor     car motor
editor by czh 2023-02-18

China 42mm High Torque Low Speed 6V 12V DC Electric Wheel Motor Gear Box Brushless 24v DC Motor brushless motor

Warranty: 3months-1year
Product Variety: FT-42mm PGM 4818
Use: BOAT, Automobile, Electric Bicycle, Admirer, House Appliance, 10000W Large Electrical power Voltage Converter AC110V-220V Motor Velocity Dimming Adjustment Controllable Silicon Electronic Regulator Beauty instrument, Wise House
Kind: Equipment MOTOR
Torque: 1-300kgf.cm, Custom
Development: Permanent Magnet
Commutation: Brush
Defend Feature: Explosion-proof
Pace(RPM): 1rpm-600rpm
Continuous Existing(A): about 110mA-1550mA
Effectiveness: 43%-95%
Solution Name: Brushless Motor
Geared motor model: FT-42mm PGM 4818
Equipment box dimensions: 42mm
Voltage: 1-48V
Pace: 1rpm-600rpm
DC equipment motors are extensively used: Robots, digital locks, general public bicycle locks, 1 Stainless Steel Solid Established screw shaft collars double break up shaft collar relays
Motor variety: Bushless
Function: Substantial Effectiveness
Keywords: Prolonged Life Reduced Sounds
Packaging Specifics: Regular packaging can be personalized according to client specifications
Port: HangZhou

FT MOTORGeared motor design: FT-42mm PGM 4818 Brushless MotorGearbox diameter: Ø42mmVoltage: 1-24V,customSpeed: 1rpm-600rpm,custom

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Motor

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China 42mm High Torque Low Speed 6V 12V DC Electric Wheel Motor Gear Box Brushless 24v DC Motor     brushless motor	China 42mm High Torque Low Speed 6V 12V DC Electric Wheel Motor Gear Box Brushless 24v DC Motor     brushless motor
editor by czh 2023-02-16

China 220~240v 50hz TYD49 TYC50 TYC60 low speed high torque 2.5rpm 14w ac synchronous motor 60ktyz manufacturer

Warranty: 3months-1year
Model Variety: XH-forty nine/50/60TYC
Kind: Synchronous Motor
Frequency: 50Hz, 50Hz-60Hz
Period: One-phase
Protect Feature: Drip-proof
AC Voltage: 220~240V
Performance: IE 1
Sample: Obtainable
Voltage: AC220V-240V
Dielectric strength: 1800v/s
Temperature: ≤75K
Output torque: 25kgf.cm
Sound: ≤40dB(A)
Rotation Direction: CW or CCW
Inclusion course: class B E
Certification: ce
Packaging Details: Polyfoam or carton seperator within, strong export carton box outdoors with pallet
Port: HangZhou,CHINA

substantial speed minimal sounds dB 30~50 synchronous motor 49tyj

This merchandise is widely use for types of washing machine,shower…

Structure Curve:

1)Motor Place:To be calculated with motor horizontally held.

2)Environmental temperature:25±10°C

3)Environmental humidity:sixty five%±25%RH

KindXH-49TYD
Measurement49mm* 49mm*24mmROTATIONCW/CCW
VOLTAGE
220V/50HZ/60HZ OR:110V
,12V/50/60HZ
Mood
ATURE

TEMP:-15°c—42°c
humidity≤ shaft collars for pipe plastic plastic spacers Aluminum standoffs ninety%
Enter
Energy
4wSounds≤40dB
OUTPUT
Power
0.5WINSUE Course(<105°c)
Input
Recent
18mA
Velocity(rpm)
50HZ
onetwo.fivefour5eightten15twenty fivethirty
Velocity(rpm)
60HZ
1.twothree4.8six10twelvetwentythirty36
TORQUE
(kgf.cm)
Continue
Perform
thirty127.563.8three2.1.twoone

Remark: The over complex datas are only for reference, which can be personalized according to
different demands right after evaluation.

item method

HangZhou CZPT Co., Ltd is committed to the style and creation of AC &DC motors, which are commonly utilized in household appliances, electric toys and electricity equipment .And we can also can design and style the motors according to the client’s specifications.
our firm is located in HangZhou metropolis and Our factory with The complete manufacturing facility area is about 7500 sq. meters. We owns substantial technologies help and advanced manufacturing gear. And we have a team of specialists in engineering, manufacturing, high quality manage, Incoloy 800 Inconel 718 inconel 600 625 monel 400 Alloy Bars Hastelloy C276 creation administration and technology growth. The output amount for each thirty day period is as below,
Common motor five hundred,000pcs
Vacuum cleaner motor two hundred,000pcs synchronous motor 49tyjs two hundred,000pcs Massive and micro DC motor 300,000PCS Bldc and gear motor two hundred,000PCS
Our firm comprehensively promotes ISO9001:2001 management techniques and are exporting our motors to several countries with distinct purposes ,like Europe, The us, Middle East , East Asia, South The usa market place. With aggressive cost and excellent good quality, Customized Design and style OEM Excellent High quality CNC Turning Mountable Shaft Collar we hope to build a prolonged time period enterprise interactions with each and every spouse on the mutual reward.

speak to us

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China 220~240v 50hz TYD49 TYC50 TYC60 low speed high torque 2.5rpm 14w ac synchronous motor 60ktyz     manufacturer China 220~240v 50hz TYD49 TYC50 TYC60 low speed high torque 2.5rpm 14w ac synchronous motor 60ktyz     manufacturer
editor by czh2023-02-16

China 57mm 220V 70W 13rpm High Torque Low Speed Blac Brushless DC Planetary Gear Motor motor engine

Solution Description

BG 57BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Security class IP44
Noise ≤65dB
Amount of Poles/ phases eight/3
Lifespan >5000h

Electrical Requirements
Model RATED LOAD NO LOAD   STALL
Voltage   Electricity Velocity Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 57BL01 24 35 3000 .eleven two.four 4000 .3   .33   seven.2
BG 57BL02 24 70 3000 .22 four.8 4000 .6 .sixty six fourteen.four
We can also customize goods according to customer needs.

 Planetary Gear Motor Technological Info-BG
Ratio 4 6  16  24 36 sixty four 144 216
NO-load speed one thousand 666 250 166 111 62.five 28 18
Rated speed(rpm) 750 500 187 one hundred twenty five 83 46 twenty 13
Rated torque(N.m) .4 .six one.5 two.two 3.three five.two eleven.88 seventeen.eighty two

Recognized in 1994, HangZhou BG Motor Factory is a professional producer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Common motors and AC motors. We have a plant region of 6000 sq. meters, a number of patent certificates, and we have the impartial style and improvement abilities and sturdy complex drive, with an yearly output of much more than 1 million units. Since the beginning of its establishment, BG motor has concentrated on the all round solution of motors. We manufacture and style motors, supply specialist personalized solutions, react swiftly to client requirements, and actively support buyers to fix difficulties. Our motor goods are exported to 20 international locations, which includes the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea and many others.
Our founder, Mr. Sunlight, has a lot more than forty years of knowledge in motor technology, and our other engineers also have more than 15 several years of encounter, and 60% of our workers have a lot more than ten years of knowledge, and we can guarantee you that the high quality of our motors is prime notch.
The merchandise include AGV, underwater robots, robots, sewing device business, automobiles, medical equipment, computerized doors, lifting gear, industrial products and have a broad range of programs.
We strive for CZPT in the good quality of each item, and we are only a modest and innovative company.
Our eyesight: Drive the planet forward and make existence greater!

Q:1.What kind of motors can you provide?

A:At current, we primarily make brushless DC motors, brush DC motors, AC motors, Common Motors the energy of the motor is significantly less than 5000W, and the diameter of the motor is not much more than 200mm

Q:2.Can you ship me a cost record?

A:For all of our motors, they are personalized based on different requirements like lifetime, sounds,voltage,and shaft and so forth. The value also differs in accordance to once-a-year amount. So it’s genuinely tough for us to provide a cost checklist. If you can share your detailed specifications and yearly quantity, we’ll see what supply we can offer.

Q:3.Can l get some samples?

A:It is dependent. If only a handful of samples for private use or substitution, I am concerned it will be hard for us to supply simply because all of our motors are custom created and no inventory obtainable if there are no more demands. If just sample tests just before the formal get and our MOQ,cost and other conditions are acceptable,we’d enjoy to provide samples.

Q4:Can you offer OEM or ODM provider?

A:Yes,OEM and ODM are equally available, we have the expert R&D dept which can provide professional options for you.

Q5:Can l pay a visit to your manufacturing unit prior to we spot an buy?

A:welcome to go to our manufacturing unit,wear every single delighted if we have the opportunity to know every single other much more.

Q:6.What is actually the direct time for a normal order?

A:For orders, the regular guide time is fifteen-twenty times and this time can be shorter or more time based on the different model,interval and quantity.

US $35.99-39.99
/ Piece
|
2 Pieces

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 57BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 57BL01 24 35 3000 0.11 2.4 4000 0.3   0.33   7.2
BG 57BL02 24 70 3000 0.22 4.8 4000 0.6 0.66 14.4
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 4 6  16  24 36 64 144 216
NO-load speed 1000 666 250 166 111 62.5 28 18
Rated speed(rpm) 750 500 187 125 83 46 20 13
Rated torque(N.m) 0.4 0.6 1.5 2.2 3.3 5.2 11.88 17.82
US $35.99-39.99
/ Piece
|
2 Pieces

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 57BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 57BL01 24 35 3000 0.11 2.4 4000 0.3   0.33   7.2
BG 57BL02 24 70 3000 0.22 4.8 4000 0.6 0.66 14.4
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 4 6  16  24 36 64 144 216
NO-load speed 1000 666 250 166 111 62.5 28 18
Rated speed(rpm) 750 500 187 125 83 46 20 13
Rated torque(N.m) 0.4 0.6 1.5 2.2 3.3 5.2 11.88 17.82

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China 57mm 220V 70W 13rpm High Torque Low Speed Blac Brushless DC Planetary Gear Motor     motor engine	China 57mm 220V 70W 13rpm High Torque Low Speed Blac Brushless DC Planetary Gear Motor     motor engine
editor by czh 2023-01-02

China FTG low speed high torque right angle ac gearbox gear motor speed reducer motor driver

Warranty: 3months-1year
Model Number: 4IK60GN-4GN40K
Type: Induction Motor
Frequency: 50
Phase: Single-phase
Protect Feature: Totally Enclosed, Waterproof
AC Voltage: 110V 220V 380V
Efficiency: Ie 3
Certification: ce RoHS
Shell Material: Aluminium
Weight: 3.82kg
Product Type: ac gear motor with gearbox
Product Keywords: FTG 12v low speed high torque dc gearbox gear motor
Application: General Machinery

FTG ac single phase gear motor gearmotor with gearbox diameter60mm 70mm 80mm 90mm 1Whatsapp: MOBILE PHONE: WEBSITE:WWW.FT-MOTOR.COM

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China FTG low speed high torque right angle ac gearbox gear motor speed reducer     motor driver	China FTG low speed high torque right angle ac gearbox gear motor speed reducer     motor driver
editor by czh

in Barquisimeto Venezuela (Bolivarian Republic of) sales price shop near me near me shop factory supplier High Speed High Power 24V 32mm BLDC Planetary Gear Motor manufacturer best Cost Custom Cheap wholesaler

  in Barquisimeto Venezuela (Bolivarian Republic of)  sales   price   shop   near me   near me shop   factory   supplier High Speed High Power 24V 32mm BLDC Planetary Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

It has recognized stable cooperation with numerous nicely acknowledged universities and institutes in china this kind of as, Zhejiang College, Jilin College, Specialized committee of countrywide chain generate standard, Institute of countrywide chain drive, Zhejiang application engineering content institute, Huhan substance security institute and it cooperated to found China 1st Automobile chain institute with Countrywide chain generate institute. We also can design and style and make non-standard goods to meet customers’ unique specifications. We offer OEM service. High Speed Large EPT 24v 32mm BLDC Planetary Equipment EPT

Product A

Product B

Note: We only demonstrate several motor models, if these designs are not what you want, please freely inform us about your need. We will provide you with a ideal motor answer and cost soon.

Our Workshop

Other EPTs

Certificates

FAQ

1 Q: What is actually your MOQ?
A: 1 unit is appropriate.

two Q: What about your guarantee?
A: One particular year.

3 Q: Do you give OEM services with client-symbol?
A: Of course, we could do OEM orders, but we largely focus on our very own model.

four Q: How about your payment terms?
A: TT, western union and Paypal. 100% payment EPT for orders significantly less $five,000. 30% deposit and balance just before supply for orders above $five,000.

five Q: How about your EPT?
A: Carton, Plywood circumstance and foam within. If you require more, we can pack all the goods with pallet.

six Q: What info need to be presented, if I get from you?
A: Rated EPT, EPT ratio, enter pace, mounting placement. A lot more details, far better!

seven Q: How do you produce?
A: We will evaluate and pick the most appropriate waEPTof shipping by sea, air or express courier.

We hope you will enEPT cooperating with us.

  in Barquisimeto Venezuela (Bolivarian Republic of)  sales   price   shop   near me   near me shop   factory   supplier High Speed High Power 24V 32mm BLDC Planetary Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Barquisimeto Venezuela (Bolivarian Republic of)  sales   price   shop   near me   near me shop   factory   supplier High Speed High Power 24V 32mm BLDC Planetary Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler