China Electric 1.2 Degree NEMA 34 Easy Servo Stepper Motor with Planetary Gearbox for 3D Printer supplier

Item Description

Item Description

Stepper Motor Description

Large Torque 
High Accuracy 
Clean Movement 
 
Stepper motors, AC servo motors and brushless dc motors are avaiable to tailored for the globe, NEMA eleven, 14, sixteen, 17, 23, 24, 34 stepper motor, 50W, 100W, 200W, 400W, 500W, 750W, 1000W, 1200W AC servo motor, and brushless dc motor are all incorporated. 
 
The derived merchandise are widely utilised in ATM machines, electronic scanners, stylus printers, plotters, slot machines, CD-ROM drivers, stage lighting, digicam lenses, CNC equipment, health care machines, 3D printers, cleansing devices and quadcopter for market and our life.
 
All the derived merchandise of us can be personalized for your needs 

 

Merchandise Parameters

Motor Technological Specification

Flange

NEMA 34

Action angle

one.8 [°] ± 5 [%]

Period resistance

.34 [Ohm] ± 10 [%]

Phase inductance

2.7 [mH] ± twenty [%]

Rotor inertia

1900 [g.cm²]

Ambient temperature

-20 [°C] ~ +50 [°C]

Temperature increase

80 [K]

Dielectric strength

five hundred [VAC 1 Moment]

Class safety

IP20

Max. shaft radial load

220 [N]

Max. shaft axial load

60 [N]

Fat

2300 [g.]

  Encoder resolution   1000ppr
  Encoder rated voltage    5Vdc
  Encoder output type    line driver

Mechanical Drawing (in mm)

 

 

Nema Model Length Step Angle Current/Section Resistance/Stage Inductance/Phase Holding Torque # of Qualified prospects Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
CLOOSE CLOOP Step MOTOR
Nema17 EW17-420-E1000 67.six one.80  2.00  1.35  two.80  .48min 4.00  77.00 
EW17-420M-E1000 a hundred.six 1.80  two.00  one.35  two.80  .48min four.00  77.00 
EW17-520-E1000 seventy nine.6 1.80  two.00  1.75  4.00  .72min 4.00  110.00 
EW17-520M-E1000 112.6 one.80  2.00  one.75  4.00  .72min 4.00  110.00 
Nema23 EW23-240-E1000 77.three 1.80  4.00  .44  1.40  1.20min 4.00  280.00 
EW23-240M-E1000 117.5 one.80  4.00  .44  one.40  one.20min four.00  280.00 
EW23-350-E1000 ninety eight.three one.80  five.00  .40  1.70  2.00min 4.00  520.00 
EW23-350M-E1000 138.5 one.80  five.00  .38  one.70  2.00min four.00  480.00 
Nema24 EW24-450-E1000 107.eight 1.80  five.00  .45  1.80  3.00min four.00  900.00 
EW24-450M-E1000 147.8 one.80  five.00  .46  2.00  3.00min 4.00  900.00 
Nema34 EW34-260-E1000 96 one.80  6.00  .34  two.70  4.20min four.00  1900.00 
EW34-460-E1000 134.one one.80  6.00  .52  four.70  eight.20min four.00  3800.00 
EW34-460M-E1000 176.2 1.80  6.00  .54  5.00  eight.20min four.00  3800.00 

 

 

 

 

 

 

 

Organization Profile

     Getting edge of the proactive weather of the 70s, in 1977 the engineer Felice Caldi, who experienced usually been a passionate builder and inventor, started an innovative company, functioning internationally in the subject of application for industrial equipment.
Because then, this modest company primarily based in Lodi has appreciated continuous successes connected to progressive products and reducing edge “ideal in course” technologies in the subject of industrial automation, as confirmed by the many patents submitted throughout the a long time as effectively as the important awards given to it by the Chamber of Commerce of Milan and of the Lombardy Area.
    The business, many thanks to its successes above time, has developed noticeably, growing its product sales community overseas and opening another business in China to deal with the revenue movement in the Asian market place. 
    At any time attentive to the dynamics and requirements of the automation market, continually evolving and continuously searching for technological innovation, Ever Elettronica has been CZPT to react to all the technological problems that have arisen above the a long time, supplying remedies CZPT to make its customer’s equipment more and a lot more doing and hugely aggressive.
    And it is specifically to underline the significance and the uniqueness of every single solitary client that we design and style, with treatment and determination, hugely customised automation answers, that are CZPT to perfectly meet any ask for, both concerning software program and components.
    Our crew of mechatronic engineers can indeed customise the software program with specially developed firmware, and it can also adapt the motor by customising, for case in point, the length of the cables or the diameter of the crankshaft and the IP safety diploma, all strictly based on the customer’s complex specifications.

 

 

 

US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Application: Medical and Laboratory Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2

###

Customization:

###

Flange
NEMA 34
Step angle
1.8 [°] ± 5 [%]
Phase resistance
0.34 [Ohm] ± 10 [%]
Phase inductance
2.7 [mH] ± 20 [%]
Rotor inertia
1900 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
80 [K]
Dielectric strength
500 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
220 [N]
Max. shaft axial load
60 [N]
Weight
2300 [g.]
  Encoder resolution   1000ppr
  Encoder rated voltage    5Vdc
  Encoder output type    line driver

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
CLOOSE CLOOP STEP MOTOR
Nema17 EW17-420-E1000 67.6 1.80  2.00  1.35  2.80  0.48min 4.00  77.00 
EW17-420M-E1000 100.6 1.80  2.00  1.35  2.80  0.48min 4.00  77.00 
EW17-520-E1000 79.6 1.80  2.00  1.75  4.00  0.72min 4.00  110.00 
EW17-520M-E1000 112.6 1.80  2.00  1.75  4.00  0.72min 4.00  110.00 
Nema23 EW23-240-E1000 77.3 1.80  4.00  0.44  1.40  1.20min 4.00  280.00 
EW23-240M-E1000 117.5 1.80  4.00  0.44  1.40  1.20min 4.00  280.00 
EW23-350-E1000 98.3 1.80  5.00  0.40  1.70  2.00min 4.00  520.00 
EW23-350M-E1000 138.5 1.80  5.00  0.38  1.70  2.00min 4.00  480.00 
Nema24 EW24-450-E1000 107.8 1.80  5.00  0.45  1.80  3.00min 4.00  900.00 
EW24-450M-E1000 147.8 1.80  5.00  0.46  2.00  3.00min 4.00  900.00 
Nema34 EW34-260-E1000 96 1.80  6.00  0.34  2.70  4.20min 4.00  1900.00 
EW34-460-E1000 134.1 1.80  6.00  0.52  4.70  8.20min 4.00  3800.00 
EW34-460M-E1000 176.2 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Application: Medical and Laboratory Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2

###

Customization:

###

Flange
NEMA 34
Step angle
1.8 [°] ± 5 [%]
Phase resistance
0.34 [Ohm] ± 10 [%]
Phase inductance
2.7 [mH] ± 20 [%]
Rotor inertia
1900 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
80 [K]
Dielectric strength
500 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
220 [N]
Max. shaft axial load
60 [N]
Weight
2300 [g.]
  Encoder resolution   1000ppr
  Encoder rated voltage    5Vdc
  Encoder output type    line driver

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
CLOOSE CLOOP STEP MOTOR
Nema17 EW17-420-E1000 67.6 1.80  2.00  1.35  2.80  0.48min 4.00  77.00 
EW17-420M-E1000 100.6 1.80  2.00  1.35  2.80  0.48min 4.00  77.00 
EW17-520-E1000 79.6 1.80  2.00  1.75  4.00  0.72min 4.00  110.00 
EW17-520M-E1000 112.6 1.80  2.00  1.75  4.00  0.72min 4.00  110.00 
Nema23 EW23-240-E1000 77.3 1.80  4.00  0.44  1.40  1.20min 4.00  280.00 
EW23-240M-E1000 117.5 1.80  4.00  0.44  1.40  1.20min 4.00  280.00 
EW23-350-E1000 98.3 1.80  5.00  0.40  1.70  2.00min 4.00  520.00 
EW23-350M-E1000 138.5 1.80  5.00  0.38  1.70  2.00min 4.00  480.00 
Nema24 EW24-450-E1000 107.8 1.80  5.00  0.45  1.80  3.00min 4.00  900.00 
EW24-450M-E1000 147.8 1.80  5.00  0.46  2.00  3.00min 4.00  900.00 
Nema34 EW34-260-E1000 96 1.80  6.00  0.34  2.70  4.20min 4.00  1900.00 
EW34-460-E1000 134.1 1.80  6.00  0.52  4.70  8.20min 4.00  3800.00 
EW34-460M-E1000 176.2 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 

Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt

China Electric 1.2 Degree NEMA 34 Easy Servo Stepper Motor with Planetary Gearbox for 3D Printer     supplier China Electric 1.2 Degree NEMA 34 Easy Servo Stepper Motor with Planetary Gearbox for 3D Printer     supplier
editor by czh 2023-01-18